Projecting the future distributions of commercially and ecologically important species has become a critical approach for ecosystem managers to strategically anticipate change, but large uncertainties in projections limit climate adaptation planning. Although distribution projections are primarily used to understand the scope of potential change-rather than accurately predict specific outcomes-it is nonetheless essential to understand where and why projections can give implausible results and to identify which processes contribute to uncertainty. Here, we use a series of simulated species distributions, an ensemble of 252 species distribution models, and an ensemble of three regional ocean climate projections, to isolate the influences of uncertainty from earth system model spread and from ecological modeling.
View Article and Find Full Text PDFAlthough a good number of studies have investigated the impact of larval experience on aspects of post-metamorphic performance, only a few have considered the potential impact of stresses experienced by brooded embryos. In this study we separately investigated the impact of salinity stress (as low as 10) and hypoxia (1 ml O l) experienced by brooded embryos of the deposit-feeding polychaete Capitella teleta on hatching success, metamorphosis, post-metamorphic survival, and post-metamorphic growth. Salinity reduction from 30 to 10 or 15 reduced relative hatching success, presumably by reducing embryonic survival, but generally had no negative latent effects on juvenile survival or growth.
View Article and Find Full Text PDF