During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN.
View Article and Find Full Text PDFMouse strain background can influence vulnerability to excitotoxic neuronal cell death and potentially modulate phenotypes in transgenic mouse models of human disease. Evidence supports a contribution of excitotoxicity to the selective death of medium spiny neurons in Huntington's disease (HD). Here, we assess whether strain differences in excitotoxic vulnerability influence striatal cell death in a knock-in mouse model of HD.
View Article and Find Full Text PDFOver the past century, the question of whether the cells of origin of the corticospinal tract (CST) die following spinal cord injury (SCI) has been debated. A recent study reported an approximately 20% loss of retrogradely labeled cortical motoneurons following damage to their axons resulting from SCI at T9 (Hains et al. [2003] J.
View Article and Find Full Text PDFThere is continuing controversy about whether the cells of origin of the corticospinal tract (CST) undergo retrograde cell death after spinal cord injury (SCI). All previous attempts to assess this have used imaging and/or histological techniques to assess upper motoneurons in the cerebral cortex. Here, we address the question in a novel way by assessing Wallerian degeneration and axon numbers in the medullary pyramid of Sprague Dawley rats after both acute SCI, either at cervical level 5 (C5) or thoracic level 9 (T9), and chronic SCI at T9.
View Article and Find Full Text PDFPrevious studies in mice have demonstrated that forepaw gripping ability, as measured by a grip strength meter (GSM), is dependent on the contralateral sensorimotor cortex, but this dependency changes after hemisection injury at cervical level 4 (C4). Initially, the mouse fails to grip with the forepaw ipsilateral to the hemisection but gripping recovers. Additionally, a mouse's gripping by the contralateral paw becomes independent of the sensorimotor cortex, indicating a reorganization of cortical control of gripping function (Blanco, J.
View Article and Find Full Text PDF