Background: Phosphoinositide-specific phospholipase C proteins mediate environmental stress responses in many plants. However, the potential of PI-PLC genes involved with abiotic stress tolerance in wheat remains un-explored.
Objective: To study TaPLC1 genetic relation with wheat drought and heat resistance.
Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages.
View Article and Find Full Text PDFPhenazine-1-carboxylic acid (PCA) is a broad-spectrum antibiotic produced by rhizobacteria in the dryland wheat fields of the Columbia Plateau. PCA and other phenazines reductively dissolve Fe and Mn oxyhydroxides in bacterial culture systems, but the impact of PCA upon Fe and Mn cycling in the rhizosphere is unknown. Here, concentrations of dithionite-extractable and poorly crystalline Fe were approximately 10% and 30-40% higher, respectively, in dryland and irrigated rhizospheres inoculated with the PCA-producing (PCA) strain 2-79 than in rhizospheres inoculated with a PCA-deficient mutant.
View Article and Find Full Text PDFFuture efforts to increase agricultural productivity will focus on crops as functional units comprised of plants and their associated microflora in the context of the various environments in which they are grown. It is suggested that future efforts to increase agricultural productivity will focus on crops as functional units comprised of plants and their associated beneficial microorganisms in the context in which they are grown. Scientists, industry, and farmers must work closely together to develop, adapt, and apply new technologies to a wide range of cropping systems.
View Article and Find Full Text PDFPhenazine-1-carboxylic acid (PCA) is produced by rhizobacteria in dryland but not in irrigated wheat fields of the Pacific Northwest, USA. PCA promotes biofilm development in bacterial cultures and bacterial colonization of wheat rhizospheres. However, its impact upon biofilm development has not been demonstrated in the rhizosphere, where biofilms influence terrestrial carbon and nitrogen cycles with ramifications for crop and soil health.
View Article and Find Full Text PDF