Publications by authors named "Melissa J Bell"

Objective: To evaluate the efficacy of a synthetic sex-aggregation pheromone of the sand fly vector Lu. longipalpis, co-located with residual insecticide, to reduce the infection incidence of Leishmania infantum in the canine reservoir.

Methods: A stratified cluster randomised trial was designed to detect a 50% reduction in canine incident infection after 24 months in 42 recruited clusters, randomly assigned to one of three intervention arms (14 cluster each): synthetic pheromone + insecticide, insecticide-impregnated dog collars, or placebo control.

View Article and Find Full Text PDF

Background: In Brazil, members of the sand fly species complex Lutzomyia longipalpis transmit Leishmania infantum, a protist parasite that causes visceral leishmaniasis. Male Lu. longipalpis produce a sex pheromone that is attractive to both females and males.

View Article and Find Full Text PDF

In South America, the Protist parasite that causes visceral leishmaniasis, a potentially fatal human disease, is transmitted by blood-feeding female Lutzomyia longipalpis sand flies. A synthetic copy of the male produced sex-aggregation pheromone offers new opportunities for vector control applications. We have previously shown that the pheromone placed in plastic sachets (lures) can attract both females and males to insecticide treated sites for up to 3 months.

View Article and Find Full Text PDF

Background: Lutzomyia longipalpis is the South American vector of Leishmania infantum, the etiologic agent of visceral leishmaniasis (VL). Male L. longipalpis produce a sex-aggregation pheromone that is critical in mating, yet very little is known about its accumulation over time or factors involved in release.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV)-encoded immune evasion protein BNLF2a inhibits the transporter associated with antigen processing (TAP), thereby downregulating HLA class I expression at the cell surface. As a consequence, recognition of EBV-infected cells by cytotoxic T cells is impaired. Here, we show that sequence polymorphism of the BNLF2a protein is observed with natural EBV isolates, with evidence for positive selection.

View Article and Find Full Text PDF

In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01(+) public TCR (TK3).

View Article and Find Full Text PDF

The ability of CD8(+) T cells to engage a diverse range of peptide-major histocompatibility complex (MHC) complexes can also lead to cross-recognition of self and nonself peptide-MHC complexes and thus directly contribute toward allograft rejection or autoimmunity. Here we present a novel form of cross-recognition by herpes virus-specific CD8(+) cytotoxic T cells that challenges the current paradigm of self/non-self recognition. Functional characterization of a human leukocyte antigen (HLA) Cw*0602-restricted cytomegalovirus-specific CD8(+) T-cell response revealed an unusual dual specificity toward a pp65 epitope and the alloantigen HLA DR4.

View Article and Find Full Text PDF

During selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared.

View Article and Find Full Text PDF

The major ligands presented by MHC class I molecules after natural antigen processing are peptides of eight to ten residues in length, and it is widely accepted that the binding preferences of MHC class I molecules play a dominant role in dictating this classic feature of antigen presentation. In this report, we have reassessed the peptide size specificity of class I human leukocyte antigens (HLAs). By lengthening previously defined T cell epitopes by central amino acid insertion, we demonstrate that the peptide length specificity of some common HLA class I alleles (HLA-B*3501, B*0702 and A*2402) is very broad, and includes peptides of up to 25 residues.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid.

View Article and Find Full Text PDF

The early lytic cycle protein of Epstein-Barr virus (EBV), BNLF2a, has recently been shown to play a critical role in immune evasion by inhibiting the peptide transporter associated with antigen processing (TAP), thereby blocking antigen-specific CD8(+) T-cell recognition of many lytic cycle antigens. Surprisingly, we now show that a peptide ((50)VLFGLLCLL(58)) from the hydrophobic C-terminal region of this small (60-amino-acid) EBV protein is efficiently presented by the common class I allele HLA-A2 for recognition by cytotoxic T lymphocytes. The mechanism for this unexpected finding was revealed by experiments showing that this epitope is processed and presented independently of TAP.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) nuclear antigen (EBNA) 1 is perhaps the most widely studied EBV protein, because of its critical role in maintaining the EBV episome and its expression in all EBV-associated malignancies. Much of this research has focused exclusively on the EBV wild-type (wt) strain (B95-8). Sequence analysis of the gene encoding for EBNA1 in EBV isolates from 43 Caucasians has now revealed considerable EBNA1 sequence divergence from the EBV wt strain in the majority of isolates from this population group.

View Article and Find Full Text PDF

A classic feature of antigen presentation for CD8+ T cell recognition is that MHC class I molecules generally present peptides of 8-10 amino acids in length. However, recent studies have demonstrated that peptides of >10 residues play a significant role in immune surveillance by T cells restricted by some HLA class I alleles. In the present study, we describe several examples of unusually long viral peptides of 11 or 12 residues, recognized by CTLs in the context of HLA-B35.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) elicits a very large burden on the immune system, with approximately one in ten T cells being reserved solely to manage this infection. However, information on the clonotypic composition of these vast T-cell populations is limited. In this study, we sequenced 116 T-cell receptor (TcR) alpha/beta-chains specific for the highly immunogenic HLA-B*3501-resticted epitope IPSINVHHY from the pp65 antigen.

View Article and Find Full Text PDF

The factors controlling epitope selection in the T cell response to persistent viruses are not fully understood, and we have examined this issue in the context of four HLA-B*35-binding peptides from the pp65 antigen of human cytomegalovirus, two of which are previously undescribed. Striking differences in the hierarchy of immunodominance between these four epitopes were observed in healthy virus carriers expressing HLA-B*3501 versus B*3508, two HLA-B allotypes that differ by a single amino acid at position 156 (HLA-B*3501, (156)Leucine; HLA-B*3508, (156)Arginine) that projects from the alpha2 helix into the centre of the peptide-binding groove. While HLA-B*3501(+) individuals responded most strongly to the (123)IPSINVHHY(131) and (366)HPTFTSQY(373) epitopes, HLA-B*3508(+) individuals responded preferentially to (103)CPSQEPMSIYVY(114) and (188)FPTKDVAL(195).

View Article and Find Full Text PDF

The underlying generic properties of alphabeta TCRs that control MHC restriction remain largely unresolved. To investigate MHC restriction, we have examined the CTL response to a viral epitope that binds promiscuously to two human leukocyte Ags (HLAs) that differ by a single amino acid at position 156. Individuals expressing either HLA-B*3501 (156Leucine) or HLA-B*3508 (156Arginine) showed a potent CTL response to the 407HPVGEADYFEY417 epitope from EBV.

View Article and Find Full Text PDF