Publications by authors named "Melissa Holstein"

During biomanufacturing, several unit operations expose solutions of biologics to multiple stresses, such as hydrodynamic shear forces due to fluid flow and interfacial dilatational stresses due to mechanical agitation or bubble collapse. When these stresses individually act on proteins adsorbed to interfaces, it results in an increase in protein particles in the bulk solution, a phenomenon referred to as interface-induced protein particle formation. However, an understanding of the dominant cause, when multiple stresses are acting simultaneously or sequentially, on interface-induced protein particle formation is limited.

View Article and Find Full Text PDF

The removal of viruses by filtration is a critical unit operation to ensure the overall safety of monoclonal antibody (mAb) products. Many mAbs show very low filtrate flux during virus removal filtration, although there are still significant uncertainties regarding both the mechanisms and antibody properties that determine the filtration behavior. Experiments were performed with three highly purified mAbs through three different commercial virus filters (Viresolve Pro, Viresolve NFP, and Pegasus SV4) with different pore structures and chemistries.

View Article and Find Full Text PDF

Biologics manufacturing is capital and consumable intensive with need for advanced inventory planning to account for supply chain constraints. Early-stage process design and technology transfer are often challenging due to limited information on process variability regarding bioreactor titer, process yield, and product quality. Monte Carlo (MC) methods offer a stochastic modeling approach for process optimization where probabilities of occurrence for process inputs are incorporated into a deterministic model to simulate more likely scenarios for process outputs.

View Article and Find Full Text PDF

Detergent-mediated virus inactivation (VI) provides a valuable orthogonal strategy for viral clearance in mammalian processes, in particular for next-generation continuous manufacturing. Furthermore, there exists an industry-wide need to replace the conventionally employed detergent Triton X-100 with eco-friendly alternatives. However, given Triton X-100 has been the gold standard for VI due its minimal impact on protein stability and high inactivation efficacy, inactivation by other eco-friendly detergents and its impact on protein stability is not well understood.

View Article and Find Full Text PDF

Virus removal filtration is a critical step in the manufacture of monoclonal antibody products, providing a robust size-based removal of both enveloped and non-enveloped viruses. Many monoclonal antibodies show very large reductions in filtrate flux during virus filtration, with the mechanisms governing this behavior and its dependence on the properties of the virus filter and antibody remaining largely unknown. Experiments were performed using the highly asymmetric Viresolve® Pro and the relatively homogeneous Pegasus™ SV4 virus filters using a highly purified monoclonal antibody.

View Article and Find Full Text PDF

Background: Virus inactivation is a critical operation in therapeutic protein manufacturing. Low pH buffers are a widely used strategy to ensure robust enveloped virus clearance. However, the choice of model virus can give varying results in viral clearance studies.

View Article and Find Full Text PDF

Viral surrogates to screen for virus inactivation (VI) can be a faster, cheaper and safer alternative to third-party testing of pathogenic BSL2 (Biosafety level 2) model viruses. Although the bacteriophage surrogate, Ø6, has been used to assess low pH BSL2 VI, it has not been used for evaluation of detergent-mediated VI. Furthermore, Ø6 is typically assayed through host cell infectivity which introduces the risk of cross-contaminating other cell lines in the facility.

View Article and Find Full Text PDF

This paper describes a simplified affinity precipitation process for the purification of mAbs from complex mixtures using elastin-like polypeptide fused to a single Z domain of protein A (ELP-Z). This approach eliminates several steps in the original process by directly extracting the mAb from the affinity precipitate, without the need for resolubilization. The efficacy of this elution without resolubilization (EWR) approach for obtaining pure mAb is demonstrated and the effects of mixing are examined.

View Article and Find Full Text PDF

Background: Therapeutic protein manufacturing would benefit by having an arsenal of ways to inactivate viruses. There have been many publications on the virus inactivation ability of arginine at pH 4.0, but the mechanism of this inactivation is unknown.

View Article and Find Full Text PDF

Charge variants of biological products, such as monoclonal antibodies (mAbs), often play an important role in stability and biological activity. Characterization of these charge variants is challenging, however, primarily due to the lack of both efficient and effective isolation methods. In this work, we present a novel use of an established, high productivity continuous chromatography method, known as multi-column counter-current solvent gradient purification (MCSGP), to create an enriched product that can be better utilized for analytical characterization.

View Article and Find Full Text PDF

Process analytical technology (PAT) is a fast-growing field within bioprocessing that enables innovation in biological drug manufacturing. This study demonstrates novel PAT methods for monitoring multiple quality attributes simultaneously during the ultrafiltration and diafiltration (UF/DF) process operation, the final step of monoclonal antibody (mAb) purification. Size exclusion chromatography (SEC) methods were developed to measure excipients arginine, histidine, and high molecular weight (HMW) species using a liquid chromatography (LC) system with autosampler for both on-line and at-line PAT modes.

View Article and Find Full Text PDF

Beta-glucans are polysaccharides of D-glucose monomers linked by (1-3) beta-glycosidic bonds, are found to have a potential immunogenicity risk in biotherapeutic products, and are labeled as process contaminants. A common source of beta-glucans is from the cellulose found in traditional depth filter media. Typically, beta-glucan impurities that leach into the product from the primary clarification depth filters can be removed by the subsequent bind-and-elute affinity chromatography capture step.

View Article and Find Full Text PDF

Technologies capable of monitoring product quality attributes and process parameters in real time are becoming popular due to the endorsement of regulatory agencies and also to support the agile development of biotherapeutic pipelines. The utility of vibrational spectroscopic techniques such as Fourier transform mid-infrared (Mid-IR) and multivariate data analysis (MVDA) models allows the prediction of multiple critical attributes simultaneously in real time. This study reports the use of Mid-IR and MVDA model sensors for monitoring of multiple attributes (excipients and protein concentrations) in real time (measurement frequency of every 40 s) at ultrafiltration and diafiltration (UF/DF) unit operation of biologics manufacturing.

View Article and Find Full Text PDF

To achieve the high protein concentrations required for subcutaneous administration of biologic therapeutics, numerous manufacturing process challenges are often encountered. From an operational perspective, high protein concentrations result in highly viscous solutions, which can cause pressure increases during ultrafiltration. This can also lead to low flux during ultrafiltration and sterile filtration, resulting in long processing times.

View Article and Find Full Text PDF

Viral inactivation plays a critical role in assuring the safety of monoclonal antibody (mAb) therapeutics. Traditional viral inactivation involves large holding tanks in which product is maintained at a target low pH for a defined hold time, typically 30-60 min. The drive toward continuous processing and improved facility utilization has provided motivation for development of a continuous viral inactivation process.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how urea affects protein-ligand interactions in multimodal (MM) chromatography using NMR, MD simulations, and chromatography techniques.
  • It was found that urea significantly impacts protein retention and selectivity in MM systems, while its effect is less noticeable in ion exchange chromatography.
  • NMR and MD simulations revealed that, despite the ligand-binding interface of human ubiquitin remaining mostly intact, the binding strength is reduced, highlighting urea's role in improving selectivity in MM systems.
View Article and Find Full Text PDF

Externally generated pH gradients are employed on a multimodal cation exchange chromatographic resin to improve the selectivity for a mixture of model proteins. By combining controlled pH gradients with the unique selectivities arising from the multiple interaction types exhibited by the multimodal resin, the separation of the protein mixture is significantly improved as compared to linear salt gradient operation. Several gradient conditions are explored and a shallow gradient from pH 3.

View Article and Find Full Text PDF

Site-directed mutagenesis, nuclear magnetic resonance (NMR) chemical shift perturbation experiments, and molecular dynamics (MD) simulations are employed in concert with chromatographic experiments to provide insight into protein-ligand interactions in multimodal chromatographic systems. In previous studies, a preferred binding region was identified on the surface of the protein ubiquitin for binding with a multimodal ligand. In this study, site-directed mutagenesis is used to enable direct NMR evaluation of the mutant protein as compared to the wild type.

View Article and Find Full Text PDF

This study examines protein adsorption behavior and the effects of mobile phase modifiers in multimodal chromatographic systems. Chromatography results with a diverse protein library indicate that multimodal and ion exchange resins have markedly different protein binding behavior and selectivity. NMR results corroborate the stronger binding observed for the multimodal system and provide insight into the structural basis for the observed binding behavior.

View Article and Find Full Text PDF

Model protein feed mixtures containing three abundant and seven trace proteins at various concentrations were identified and employed in a series of displacement experiments. Reversed-phase liquid chromatography (RPLC) and matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry were used to evaluate the compositions of both the feed mixtures and effluent fractions from the displacement experiments. The results demonstrated that trace proteins were focused at the boundaries between the abundant solutes where they were enriched and concentrated.

View Article and Find Full Text PDF

NMR titration experiments with labeled human ubiquitin were employed in concert with chromatographic data obtained with a library of ubiquitin mutants to study the nature of protein adsorption in multimodal (MM) chromatography. The elution order of the mutants on the MM resin was significantly different from that obtained by ion-exchange chromatography. Further, the chromatographic results with the protein library indicated that mutations in a defined region induced greater changes in protein affinity to the solid support.

View Article and Find Full Text PDF

A library of cold shock protein B mutant variants was employed to examine differences in protein binding behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge density and distribution. The retention times of the mutants varied significantly during linear gradient chromatography in both systems.

View Article and Find Full Text PDF

A library of cold shock protein B (CspB) mutant variants was employed to study protein binding affinity and preferred orientations in cation exchange chromatography. Single site mutations introduced at charged amino acids on the protein surface resulted in a homologous protein set with varying charge density and distribution. The retention times of the mutants varied significantly during linear gradient chromatography.

View Article and Find Full Text PDF