Am J Physiol Lung Cell Mol Physiol
July 2009
Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection.
View Article and Find Full Text PDFThe practical application of gene transfer as a treatment for genetic diseases such as cystic fibrosis or hemophilia has been hindered, in part, by low efficiencies of vector delivery and transgene expression. We demonstrated that a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the envelope glycoprotein from the baculovirus Autographa californica (GP64) efficiently transduces and persistently expresses a reporter gene in respiratory epithelium in the absence of agents that disrupt cellular tight junction integrity. GP64-pseudotyped FIV also efficiently transduced murine hepatocytes after tail vein delivery.
View Article and Find Full Text PDFThe severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible.
View Article and Find Full Text PDFStudies of patients with severe acute respiratory syndrome (SARS) demonstrate that the respiratory tract is a major site of SARS-coronavirus (CoV) infection and disease morbidity. We studied host-pathogen interactions using native lung tissue and a model of well-differentiated cultures of primary human airway epithelia. Angiotensin converting enzyme 2 (ACE2), the receptor for both the SARS-CoV and the related human respiratory coronavirus NL63, was expressed in human airway epithelia as well as lung parenchyma.
View Article and Find Full Text PDFGene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 10(6) transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells.
View Article and Find Full Text PDFHemophilia A is a clinically important coagulation disorder caused by the lack or abnormality of plasma coagulation factor VIII (FVIII). Gene transfer of the FVIII cDNA to hepatocytes using lentiviral vectors is a potential therapeutic approach. We investigated the efficacy of feline immunodeficiency virus (FIV)-based vectors in targeting hepatocytes and correcting FVIII deficiency in a hemophilia A mouse model.
View Article and Find Full Text PDFA feline immunodeficiency virus (FIV)-based lentiviral vector was pseudotyped to identify envelope (env) glycoproteins that direct efficient gene transfer to pulmonary epithelia for the treatment or prevention of lung diseases. The envelope glycoprotein from the Jaagsiekte sheep retrovirus (JSRV) is a candidate under investigation. We utilized high titer FIV vector (>10(8) TU/ml) pseudotyped with the JSRV env glycoprotein (JSRVFIV) to study the transduction of polarized primary cultures of human airway epithelia and receptor/vector interactions.
View Article and Find Full Text PDFThe practical application of gene therapy as a treatment for cystic fibrosis is limited by poor gene transfer efficiency with vectors applied to the apical surface of airway epithelia. Recently, folate receptor alpha (FR alpha), a glycosylphosphatidylinositol-linked surface protein, was reported to be a cellular receptor for the filoviruses. We found that polarized human airway epithelia expressed abundant FR alpha on their apical surface.
View Article and Find Full Text PDF