Multiplexed tissue imaging (MTI) technologies enable high-dimensional spatial analysis of tumor microenvironments but face challenges with technical variability in staining intensities. Existing normalization methods, including z-score, ComBat, and MxNorm, often fail to account for the heterogeneous, right-skewed expression patterns of MTI data, compromising signal alignment and downstream analyses. We present UniFORM, a non-parametric, Python-based pipeline for normalizing both feature- and pixel-level MTI data.
View Article and Find Full Text PDFBackground/objectives: Pancreatic ductal adenocarcinoma (PDAC) presents significant diagnostic and prognostic challenges, as current biomarkers frequently fail to accurately stage disease, predict rapid metastatic recurrence (rPDAC), or assess response to neoadjuvant therapy (NAT). We investigated the potential for circulating neoplastic-immune hybrid cells (CHCs) as a non-invasive, multifunctional biomarker for PDAC.
Methods: Peripheral blood specimens were obtained from patients diagnosed with PDAC.
Understanding the metastatic cascade is critical for the treatment and prevention of cancer-related death. Within a tumor, immune cells have the capacity to fuse with tumor cells to generate tumor-immune hybrid cells (THCs). THCs are hypothesized to be a subset of cancer cells with the capacity to enter circulation as circulating hybrid cells (CHC) and seed metastases.
View Article and Find Full Text PDFExisting clinical biomarkers do not reliably predict treatment response or disease progression in patients with advanced intrahepatic cholangiocarcinoma (ICC). Circulating neoplastic-immune hybrid cells (CHCs) have great promise as a blood-based biomarker for patients with advanced ICC. Peripheral blood specimens were longitudinally collected from patients with advanced ICC enrolled in the HELIX-1 phase II clinical trial (NCT04251715).
View Article and Find Full Text PDFBackground: Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis.
View Article and Find Full Text PDFThe currently accepted intestinal epithelial cell organization model proposes that Lgr5 crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5 cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling.
View Article and Find Full Text PDFPersistently high, worldwide mortality from cancer highlights the unresolved challenges of disease surveillance and detection that impact survival. Development of a non-invasive, blood-based biomarker would transform survival from cancer. We demonstrate the functionality of ultra-high content analyses of a newly identified population of tumor cells that are hybrids between neoplastic and immune cells in patient matched tumor and peripheral blood specimens.
View Article and Find Full Text PDFCirculating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population found in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application to PBMC smears presents challenges due to the presence of biological and technical artifacts.
View Article and Find Full Text PDFBackground: Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis.
View Article and Find Full Text PDFWhile tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites.
View Article and Find Full Text PDFUveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis.
View Article and Find Full Text PDFColorectal cancer is the second leading cause of cancer-related deaths in the United States and accounts for an estimated 1 million deaths annually worldwide. The liver is the most common site of metastatic spread from colorectal cancer, significantly driving both morbidity and mortality. Although remarkable advances have been made in recent years in the management for patients with colorectal cancer liver metastases, significant challenges remain in early detection, prevention of progression and recurrence, and in the development of more effective therapeutics.
View Article and Find Full Text PDFCirculating hybrid cells (CHCs) are a newly discovered, tumor-derived cell population identified in the peripheral blood of cancer patients and are thought to contribute to tumor metastasis. However, identifying CHCs by immunofluorescence (IF) imaging of patient peripheral blood mononuclear cells (PBMCs) is a time-consuming and subjective process that currently relies on manual annotation by laboratory technicians. Additionally, while IF is relatively easy to apply to tissue sections, its application on PBMC smears presents challenges due to the presence of biological and technical artifacts.
View Article and Find Full Text PDFFunctional heterogeneity of healthy human tissues complicates interpretation of molecular studies, impeding precision therapeutic target identification and treatment. Considering this, we generated a graph neural network with Reactome-based architecture and trained it using 9,115 samples from Genotype-Tissue Expression (GTEx). Our graph neural network (GNN) achieves adjusted Rand index (ARI) = 0.
View Article and Find Full Text PDFAdvances in our understanding of the complex, multifaceted interactions between tumor epithelia, immune infiltrate, and tumor microenvironmental cells have been driven by highly multiplexed imaging technologies. These techniques are capable of labeling many more biomarkers than conventional immunostaining methods. However, multiplexed imaging techniques suffer from low detection sensitivity, cell loss-particularly in fragile samples-, and challenges with antibody labeling.
View Article and Find Full Text PDFBackground: Uveal melanoma is an aggressive cancer with high metastatic risk. Recently, we identified a circulating cancer cell population that co-expresses neoplastic and leukocyte antigens, termed circulating hybrid cells (CHCs). In other cancers, CHCs are more numerous and better predict oncologic outcomes compared to circulating tumor cells (CTCs).
View Article and Find Full Text PDFCancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive "liquid" biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult.
View Article and Find Full Text PDFCellular circulating biomarkers from the primary tumor such as circulating tumor cells (CTCs) and circulating hybrid cells (CHCs) have been described to harbor tumor-like phenotype and genotype. CHCs are present in higher numbers than CTCs supporting their translational potential. Methods for isolation of CHCs do not exist and are restricted to low-throughput, time consuming, and biased methodologies.
View Article and Find Full Text PDFBackground: Real-time monitoring of treatment response with a liquid biomarker has potential to inform treatment decisions for patients with rectal adenocarcinoma (RAC), esophageal adenocarcinoma (EAC), and colorectal liver metastasis (CRLM). Circulating hybrid cells (CHCs), which have both immune and tumor cell phenotypes, are detectable in the peripheral blood of patients with gastrointestinal cancers, but their potential as an indicator of treatment response is unexplored.
Methods: Peripheral blood specimens were collected from RAC and EAC patients after neoadjuvant therapy (NAT) or longitudinally during therapy and evaluated for CHC levels by immunostaining.
Metastatic progression defines the final stages of tumor evolution and underlies the majority of cancer-related deaths. The heterogeneity in disseminated tumor cell populations capable of seeding and growing in distant organ sites contributes to the development of treatment resistant disease. We recently reported the identification of a novel tumor-derived cell population, circulating hybrid cells (CHCs), harboring attributes from both macrophages and neoplastic cells, including functional characteristics important to metastatic spread.
View Article and Find Full Text PDFBackground: Levels of circulating hybrid cells (CHCs), a newly identified circulating tumor cell (CTC), correlate with disease stage and progression in cancer. We investigated their utility to risk-stratify patients with clinically N0 (cN0) oral cavity squamous cell carcinoma (OCSCC), and to identify patients with occult cervical lymph node metastases (pN+).
Methods: We analyzed peripheral blood samples for CHCs with co-expression of cytokeratin (tumor) and CD45 (leukocyte) from 22 patients with cN0 OCSCC using immunofluorescence microscopy, then correlated levels with pathologic lymph node status.
Significant advances have been made towards understanding the role of immune cell-tumor interplay in either suppressing or promoting tumor growth, progression, and recurrence, however, the roles of additional stromal elements, cell types and/or cell states remain ill-defined. The overarching goal of this NCI-sponsored workshop was to highlight and integrate the critical functions of non-immune stromal components in regulating tumor heterogeneity and its impact on tumor initiation, progression, and resistance to therapy. The workshop explored the opposing roles of tumor supportive suppressive stroma and how cellular composition and function may be altered during disease progression.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2021
Background: Colorectal cancer (CRC) ranks second in cancer deaths worldwide and presents multiple management challenges, one of which is identifying high risk stage II disease that may benefit from adjuvant therapy. Molecular biomarkers, such as ones that identify stem cell activity, could better stratify high-risk cohorts for additional treatment.
Methods: To identify possible biomarkers of high-risk disease in early-stage CRC, a discovery set (n = 66) of advanced-stage tumors were immunostained with antibodies to stemness proteins (CD166, CD44, CD26, and LGR5) and then digitally analyzed.