Publications by authors named "Melissa H Mai"

Characteristic of all conifer needles, the transfusion tissue mediates the radial transport of water and sugar between the endodermis and axial vasculature. Physical constraints imposed by the needle's linear geometry introduce two potential extravascular bottlenecks where the opposition of sugar and water flows may frustrate sugar export: one at the vascular access point and the other at the endodermis. We developed a network model of the transfusion tissue to explore how its structure and composition affect the delivery of sugars to the axial phloem.

View Article and Find Full Text PDF

Eukaryotic cell motility is crucial during development, wound healing, the immune response, and cancer metastasis. Some eukaryotic cells can swim, but cells more commonly adhere to and crawl along the extracellular matrix. We study the relationship between hydrodynamics and adhesion that describe whether a cell is swimming, crawling, or combining these motions.

View Article and Find Full Text PDF

Amino acid replacement is a useful strategy to assess the roles of axial heme ligands in the function of native heme proteins. THB1, the protein product of the Chlamydomonas reinhardtii THB1 gene, is a group 1 truncated hemoglobin that uses a lysine residue in the E helix (Lys53, at position E10 by reference to myoglobin) as an iron ligand at neutral pH. Phylogenetic evidence shows that many homologous proteins have a histidine, methionine or arginine at the same position.

View Article and Find Full Text PDF