J Phys Chem C Nanomater Interfaces
July 2024
The fabrication of complex assemblies with interesting collective properties from plasmonic nanoparticles (NPs) is often challenging. While DNA-directed self-assembly has emerged as one of the most promising approaches to forming such complex assemblies, the resulting structures tend to have large variability in gap sizes and shapes, as the DNA strands used to organize these particles are flexible, and the polydispersity of the NPs leads to variability in these critical structural features. Here, we use a new strategy termed docking to DNA origami cages (D-DOC) to organize spherical NPs into a linear heterotrimer with a precisely defined geometrical arrangement.
View Article and Find Full Text PDFIn 2020, the combination of police killings of unarmed Black people, including George Floyd, Breonna Taylor, and Ahmaud Arbery, and the Coronavirus Disease 2019 (COVID-19) pandemic brought about public outrage over long-standing inequalities in society. The events of 2020 ignited global attention to systemic racism and racial inequalities, including the lack of diversity, equity, and inclusion in the academy and especially in science, technology, engineering, mathematics, and medicine (STEMM) fields. Racial and ethnic diversity in graduate programs in particular warrants special attention as graduate students of color report experiencing alarming rates of racism, discrimination, microaggressions, and other exclusionary behaviors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
To address the current challenges in making bright, stable, and small DNA-functionalized quantum dots (QDs), we have developed a one-step ligand-exchange method to produce QD-DNA conjugates from commonly available hydrophobic QDs. We show that by systematically adjusting the reaction conditions such as ligand-to-nanoparticle molar ratio, pH, and solvent composition, stable and highly photoluminescent water-soluble QD-DNA conjugates with relatively high ligand loadings can be produced. Moreover, by site specifically binding these QD-DNA conjugates to a DNA origami template, we demonstrate that these bioconjugates have sufficient colloidal stability for DNA-directed self-assembly.
View Article and Find Full Text PDF