Publications by authors named "Melissa Goggin"

Context: Detecting marijuana use is a component of most urine drug screens targeting a single Δ-tetrahydrocannabinol metabolite. Recently, the non-intoxicating cannabinoid, cannabidiol (CBD), has gained popular acceptance for a myriad of reasons. Commercially available CBD products sold without purity regulations have become ubiquitous.

View Article and Find Full Text PDF

Marijuana use has been postulated to modulate opioid use, dependence and withdrawal. Broad target drug testing results provide a unique perspective to identify any potential interaction between marijuana use and opioid use. Using a dataset of approximately 800,000 urine drug test results collected from pain management patients of a time from of multiple years, creatinine corrected opioid levels were evaluated to determine if the presence of the primary marijuana marker 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) was associated with statistical differences in excreted opioid concentrations.

View Article and Find Full Text PDF

Meconium, the first stool of a newborn, can be analyzed to identify prenatal exposure to drugs of abuse. Meconium accumulates in a fetus during the second and third trimesters of pregnancy providing a wide window of exposure. Identification of in utero drug exposure is essential for the diagnosis and treatment of infants for dependency/withdrawal caused from the exposure.

View Article and Find Full Text PDF

The recent increase in illicit opioids sold on the black market, cut into heroin and masqueraded as prescription pills prompts a significant public health concern. Most designer opioids possess unknown potencies and unknown pharmacokinetics and their unregulated, variable dosages lead to rashes of overdoses. Additionally, many of the designer opioids, especially the fentanyl analogs are significantly more potent than heroin.

View Article and Find Full Text PDF

A wide range of concentrations are frequently observed when measuring drugs of abuse in urine toxicology samples; this is especially true for amphetamine and methamphetamine. Routine liquid chromatography-tandem mass spectrometry confirmatory methods commonly anchored at a 50 ng/mL lower limit of quantitation can span approximately a 100-fold concentration range before regions of non-linearity are reached deteriorating accurate quantitation and qualitative assessments. In our experience, approximately a quarter of amphetamine and methamphetamine positive samples are above a 5,000 ng/mL upper limit of quantitation and thus require reanalysis with dilution for accurate quantitative and acceptable qualitative results.

View Article and Find Full Text PDF

The illicit drug market has seen an increase in designer opioids, including fentanyl and methadone analogs, and other structurally unrelated opioid agonists. The designer opioid, furanyl fentanyl, is one of many fentanyl analogs clandestinely synthesized for recreational use and contributing to the fentanyl and opioid crisis. A method has been developed and validated for the analysis of furanyl fentanyl and furanyl norfentanyl in urine specimens from pain management programs.

View Article and Find Full Text PDF

Urine drug testing is common for workplace drug testing, prescription management, emergency medicine and the criminal justice system. Unsurprisingly, with the significant consequences based upon the results of urine drug testing, a donor in need of concealing the contents of their sample is highly motivated to cheat the process. Procedures and safeguards ensuring sample validity are well known, and include measuring sample temperature at the time of collection, and laboratory measurements of creatinine, specific gravity and pH.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is a high volume industrial chemical commonly used in polymer and rubber production. It is also present in cigarette smoke, automobile exhaust, and urban air, leading to widespread exposure of human populations. Upon entering the body, BD is metabolized to electrophilic epoxides, 3,4-epoxy-1-butene (EB), diepoxybutane (DEB), and 3,4-epoxy-1,2-diol (EBD), which can alkylate DNA nucleobases.

View Article and Find Full Text PDF

The leaves of the South Asian plant kratom are described as having stimulating effects at low doses, and opiate-like analgesic and euphoric effects at high doses. A long history of use and abuse has led to the classification of kratom as a controlled substance in its native Thailand and other South Asian countries. However, kratom is not controlled in the United States, and the ready availability of kratom has led to its emergence as an herbal drug of abuse.

View Article and Find Full Text PDF

The 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N(6)-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N(6)-propano group on 1,N(6)-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N(6)-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated.

View Article and Find Full Text PDF

Exposure to endogenous and exogenous chemicals can lead to the formation of structurally modified DNA bases (DNA adducts). If not repaired, these nucleobase lesions can cause polymerase errors during DNA replication, leading to heritable mutations and potentially contributing to the development of cancer. Because of their critical role in cancer initiation, DNA adducts represent mechanism-based biomarkers of carcinogen exposure, and their quantitation is particularly useful for cancer risk assessment.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial chemical and a common environmental pollutant present in urban air. BD is classified as a human carcinogen based on epidemiological evidence for an increased incidence of leukemia in workers occupationally exposed to BD and its potent carcinogenicity in laboratory mice. A diepoxide metabolite of BD, 1,2,3,4-diepoxybutane (DEB), is considered the ultimate carcinogenic species of BD due to its ability to form genotoxic DNA-DNA cross-links.

View Article and Find Full Text PDF

Background: Patients with iron-deficiency anemia benefit from intravenous iron therapies. Development of these pharmaceutical agents requires pharmacokinetic studies monitoring levels of both the administered agent and transferrin-bound iron (TBI). Successful pharmacokinetic methods must discriminate iron species.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen. The mechanism of BD-mediated cancer is of significant interest because of the widespread exposure of humans to BD from cigarette smoke and urban air. BD is metabolically activated to 1,2,3,4-diepoxybutane (DEB), which is a highly genotoxic and mutagenic bis-alkylating agent believed to be the ultimate carcinogenic species of BD.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen on the basis of epidemiological evidence for an increased incidence of leukemia in workers occupationally exposed to BD and its carcinogenicity in laboratory rats and mice. BD is metabolically activated to epoxide intermediates that can react with nucleophilic sites of cellular biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogenic species of BD due to its potent genotoxicity and mutagenicity attributed to the ability to form DNA-DNA cross-links and exocyclic nucleoside adducts.

View Article and Find Full Text PDF

1,2,3,4-Diepoxybutane (DEB) is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A --> T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (compound 2), 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (compound 3), and 1,N(6)-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2'-deoxyadenosine (compound 4).

View Article and Find Full Text PDF

Cdk2 was once believed to play an essential role in cell cycle progression, but cdk2(-/-) mice have minimal phenotypic abnormalities. In this study, we examined the role of cdk2 in hepatocyte proliferation, centrosome duplication and survival. Cdk2(-/-) hepatocytes underwent mitosis and had normal centrosome content after mitogen stimulation.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial and environmental chemical classified as a human carcinogen based on epidemiologic studies in occupationally exposed workers and animal studies in laboratory rats and mice. BD is metabolically activated to three epoxides that can react with nucleophilic sites in biomolecules. Among these, 1,2,3,4-diepoxybutane (DEB) is considered the ultimate carcinogen due to its high genotoxicity and mutagenicity attributed to its ability to form DNA-DNA cross-links.

View Article and Find Full Text PDF

The D-type cyclins (D1, D2 and D3) are components of the cell cycle machinery and govern progression through G(1) phase in response to extracellular signals. Although these proteins are highly homologous and conserved in evolution, they contain distinct structural motifs and are differentially regulated in various cell types. Cyclin D1 appears to play a role in many different types of cancer, whereas cyclins D2 and D3 are less frequently associated with malignancy.

View Article and Find Full Text PDF

1,3-Butadiene (BD) is an important industrial chemical used in the manufacture of rubber and plastics as well as an environmental pollutant present in automobile exhaust and cigarette smoke. It is classified as a known human carcinogen based on the epidemiological evidence in occupationally exposed workers and its ability to induce tumors in laboratory animals. BD is metabolically activated to several reactive species, including 1,2,3,4-diepoxybutane (DEB), which is hypothesized to be the ultimate carcinogenic species due to its bifunctional electrophilic nature and its ability to form DNA-DNA and DNA-protein cross-links.

View Article and Find Full Text PDF

The control of hepatocyte growth is relevant to the processes of liver regeneration, development, metabolic homeostasis, and cancer. A key component of growth control is the protein kinase Akt, which acts downstream of mitogens and nutrients to affect protein translation and cell cycle progression. In this study, we found that transient transfection of activated Akt triggered a 3-4-fold increase in liver size within days but only minimal hepatocyte proliferation.

View Article and Find Full Text PDF

1,3-butadiene (BD) is a major industrial chemical used in rubber and plastics production and is recognized as an animal and human carcinogen. Although the exact mechanism of BD-induced carcinogenesis is unknown, chemical reactions of epoxide metabolites of BD with DNA to form nucleobase adducts are likely to contribute to multistage carcinogenesis. Among BD-derived epoxy metabolites, 1,2:3,4-diepoxybutane (DEB) appears to be the most genotoxic and carcinogenic, probably because of its bifunctional nature.

View Article and Find Full Text PDF

DNA-DNA cross-linking by 1,2,3,4-diepoxybutane (DEB) is considered the molecular basis for its potent cytotoxic and genotoxic effects. DEB reactions with DNA initially lead to N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)-guanine monoadducts, which can then alkylate neighboring DNA bases to form bifunctional lesions. We recently reported the structures of four regioisomeric guanine-adenine adducts of DEB involving the N7 position of guanine and the N1, N3, N6, and N7 positions of adenine (Park, S.

View Article and Find Full Text PDF

In normal cells, cyclin D1 is induced by growth factors and promotes progression through the G(1) phase of the cell cycle. Cyclin D1 is also an oncogene that is thought to act primarily by bypassing the requirement for mitogens during the G(1) phase. Studies of clinical tumors have found that cyclin D1 overexpression is associated with chromosome abnormalities, although a causal effect has not been established in experimental systems.

View Article and Find Full Text PDF