The consumption of antidepressants, such as fluoxetine, has increased over the years and, as a result, they are increasingly found in aquatic systems. Given the increasing use of zebrafish as an animal model in toxicological studies, this work proposed to evaluate the effects of chronic exposure, for 21 days, to fluoxetine at environmentally relevant concentrations (1, 10, 100, and 1000 ng/L). The behavioral tests performed did not reveal significant effects of fluoxetine.
View Article and Find Full Text PDFThe use of urban wastewater reclaimed water has recently increased across the globe to restore stream environmental flows and mitigate the effects of water scarcity. Reclaimed water is disinfected using different treatments, but their effects into the receiving rivers are little studied. Physiological bioassays and biomarkers can detect sub-lethal effects on target species, but do not provide information on changes in community structure.
View Article and Find Full Text PDFCarbaryl and fenitrothion are two insecticides sharing a common mode of action, the inhibition of the acetylcholinesterase (AChE) activity. Their use is now regulated or banned in different countries, and the environmental levels of both compounds in aquatic ecosystems have decreased to the range of pg/L to ng/L. As these concentrations are below the non-observed-adverse-effect-concentrations (NOAEC) for AChE inhibition reported for both compounds in aquatic organisms, there is a general agreement that the current levels of these two chemicals are safe for aquatic organisms.
View Article and Find Full Text PDFThe number of people suffering from mental health problems is rising, with anxiety and depression now the most commonly diagnosed psychiatric conditions. Selective serotonin reuptake inhibitors (SSRIs) are one of the most prescribed pharmaceuticals to treat these conditions, which has led to their common detection in many aquatic ecosystems. As the monoaminergic system shows a high degree of structural conservation across diverse animal phyla, a reasonable assumption is that the environmental levels of SSRIs in surface water can lead to adverse effects on fish and other aquatic wildlife.
View Article and Find Full Text PDFFluoxetine is one of the most studied and detected selective serotonin reuptake inhibitors in the aquatic environment, found at concentrations ranging from ng/L to μg/L. Its presence in this environment can induce effects on aquatic organisms that may compromise their fitness. Several experimental studies have demonstrated that fluoxetine can induce neurotoxicity, genetic and biochemical changes, and cause behavioral dysfunction in a wide range of fish species.
View Article and Find Full Text PDFAdrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool.
View Article and Find Full Text PDFNeuroactive chemicals are compounds that can modulate, at very low concentrations, the normal function of the central nervous systems of an organism through various primary modes of action (MoA) [...
View Article and Find Full Text PDFCatecholamine-triggered β-adrenoceptor (β-AR) signaling is essential for the correct functioning of the heart. Although both β - and β -AR subtypes are expressed in cardiomyocytes, drugs selectively targeting β -AR have proven this receptor as the main target for the therapeutic effects of beta blockers in the heart. Here, we report a new strategy for the light-control of β -AR activation by means of photoswitchable drugs with a high level of β -/β -AR selectivity.
View Article and Find Full Text PDFThe insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours.
View Article and Find Full Text PDFHyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure.
View Article and Find Full Text PDFThis study assessed the effects of the monoamine oxidase (MAO) inhibitor deprenyl in locomotor activity. The mechanisms of action of deprenyl were also determined by studying the relationship between behaviour, MAO activity and neurotransmitter levels. Modulation of the monoamine system was accomplished by 24 h exposure to two model psychotropic pharmaceuticals with antagonistic and agonistic serotonin signalling properties: 10 mg/L of 4-chloro-DL-phenylalanine (PCPA) and 1 mg/L of deprenyl, respectively.
View Article and Find Full Text PDFAmmonia is a pollutant frequently found in aquatic ecosystems. In fish, ammonia can cause physical damage, alter its behaviour, and even cause death. Exposure to ammonia also increases fish physiological stress, which can be measured through biomarkers.
View Article and Find Full Text PDFZebrafish embryos and larvae are vertebrate models increasingly used in translational neuroscience research. Behavioral impairment induced by the exposure to neuroactive or neurotoxic compounds is commonly linked to changes in modulatory neurotransmitters in the brain. Although different analytical methods for determining monoaminergic neurochemicals in zebrafish larvae have been developed, these methods have been used only on whole larvae, as the dissection of the brain of hundreds of larvae is not feasible.
View Article and Find Full Text PDFThis study examines the effects of acute pharmacological modulation of the serotonergic system over zebrafish larvae's cognitive, basic, and defense locomotor behaviors, using a medium to high throughput screening assay. Furthermore, the relationship between behavior, enzyme activity related to neurotransmitter metabolism, neurotransmitter levels, and gene expression was also determined. Modulation of larvae serotonergic system was accomplished by 24 h exposure to single and opposite pharmacodynamics co-exposure to three model psychopharmaceuticals with antagonistic and agonistic serotonin signaling properties: 2.
View Article and Find Full Text PDFFenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low μg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPredation is one of the main sources of mortality for fish larvae. During evolution, they have developed different anti-predator behaviours, as the vibrational-evoked startle response and its habituation, for promoting survival to predator's strikes. Whereas these two behaviours can be altered by the exposure to some neurotoxicants, it is currently unknown if the exposure to environmentally relevant concentration (ERC) of neurotoxic pollutants could impair them.
View Article and Find Full Text PDFExposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system.
View Article and Find Full Text PDFTwo essential key events in acrylamide (ACR) acute neurotoxicity are the formation of adducts with nucleophilic sulfhydryl groups on cysteine residues of selected proteins in the synaptic terminals and the depletion of the glutathione (GSx) stores in neural tissue. The use of N-acetylcysteine (NAC) has been recently proposed as a potential antidote against ACR neurotoxicity, as this chemical is not only a well-known precursor of the reduced form of glutathione (GSH), but also is an scavenger of soft electrophiles such as ACR. In this study, the suitability of 0.
View Article and Find Full Text PDFOrganophosphorus compounds are acetylcholinesterase inhibitors used as pesticides and chemical warfare nerve agents. Acute organophosphorus poisoning (acute OPP) affects 3 million people, with 300 000 deaths annually worldwide. Severe acute OPP effects include overstimulation of cholinergic neurons, seizures, status epilepticus, and finally, brain damage.
View Article and Find Full Text PDF