Experience alters cortical networks through neural plasticity mechanisms. During a developmental critical period, the most dramatic consequence of occluding vision through one eye (monocular deprivation) is a rapid loss of excitatory synaptic inputs to parvalbumin-expressing (PV) inhibitory neurons in visual cortex. Subsequent cortical disinhibition by reduced PV cell activity allows for excitatory ocular dominance plasticity.
View Article and Find Full Text PDFThe maturation of inhibitory circuits in juvenile visual cortex triggers a critical period in the development of the visual system. Although several manipulations of inhibition can alter the timing of the critical period, none have demonstrated the creation of a new critical period in adulthood. We developed a transplantation method to reactivate critical period plasticity in the adult visual cortex.
View Article and Find Full Text PDFPrevious research from our lab has shown that when using a rodent model of ischemic stroke (permanent middle cerebral artery occlusion), mild sensory stimulation, when delivered within two hours of ischemic onset, completely protects the cortex from impending ischemic stroke damage when assessed 24 hours post-occlusion. However, the long-term stability of this protection remains unclear. Using intrinsic signal optical imaging for assessment of cortical function, laser speckle imaging for assessment of blood flow, a battery of behavioral tests and cresyl violet for histological assessment, the present study examined whether this protection was long-lasting.
View Article and Find Full Text PDFStroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia). Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex, is the most common site of human stroke, and ischemia within its territory can result in extensive dysfunction or death.
View Article and Find Full Text PDFBackground: Accumulated research has shown that the older adult brain is significantly more vulnerable to stroke than the young adult brain. Although recent evidence in young adult rats demonstrates that single-whisker stimulation can result in complete protection from ischemic damage after permanent middle cerebral artery occlusion (pMCAO), it remains unclear whether the same treatment would be effective in older animals.
Methods And Results: Aged rats (21 to 24 months of age) underwent pMCAO and subsequently were divided into "treated" and "untreated" groups.
Stroke is the fourth leading cause of death in the United States and the leading cause of long-term disability. Ischemic stroke, due to an interruption in blood supply, is particularly prevalent; 87% of all strokes are ischemic. Unfortunately, current options for acute treatment are extremely limited and there is a great need for new treatment strategies.
View Article and Find Full Text PDFWhen delivered within 1 and in most cases 2 h of permanent middle cerebral artery occlusion (pMCAO), mild sensory stimulation (intermittent single whisker stimulation) was shown to be completely neuroprotective 24 h after pMCAO in a rodent model of ischemic stroke, according to assessment with multiple techniques (Lay et al., 2010). The acute effect of stimulation treatment on the ischemic cortex, however, has yet to be reported.
View Article and Find Full Text PDFBackground And Purpose: Using a rodent model of ischemia (permanent middle cerebral artery occlusion), our laboratory previously demonstrated that 4.27 minutes of patterned single-whisker stimulation delivered over 120 minutes can fully protect from impending damage when initiated within 2 hours of permanent middle cerebral artery occlusion ("early"). When initiated 3 hours postpermanent middle cerebral artery occlusion ("late"), stimulation resulted in irreversible damage.
View Article and Find Full Text PDFDespite progress in reducing ischemic stroke damage, complete protection remains elusive. Here we demonstrate that, after permanent occlusion of a major cortical artery (middle cerebral artery; MCA), single whisker stimulation can induce complete protection of the adult rat cortex, but only if administered within a critical time window. Animals that receive early treatment are histologically and behaviorally equivalent to healthy controls and have normal neuronal function.
View Article and Find Full Text PDF