Publications by authors named "Melissa DeRycke"

Prostate cancer (PrCa) is highly heritable; 284 variants have been identified to date that are associated with increased prostate cancer risk, yet few genes contributing to its development are known. Expression quantitative trait loci (eQTL) studies link variants with affected genes, helping to determine how these variants might regulate gene expression and may influence prostate cancer risk. In the current study, we performed eQTL analysis on 471 normal prostate epithelium samples and 249 PrCa-risk variants in 196 risk loci, utilizing RNA sequencing transcriptome data based on ENSEMBL gene definition and genome-wide variant data.

View Article and Find Full Text PDF

Background: Mutations in several genes predispose to colorectal cancer. Genetic testing for hereditary colorectal cancer syndromes was previously limited to single gene tests; thus, only a very limited number of genes were tested, and rarely those infrequently mutated in colorectal cancer. Next-generation sequencing technologies have made it possible to sequencing panels of genes known and suspected to influence colorectal cancer susceptibility.

View Article and Find Full Text PDF

Prostate cancer (PCa) susceptibility is defined by a continuum from rare, high-penetrance to common, low-penetrance alleles. Research to date has concentrated on identification of variants at the ends of that continuum. Taking an alternate approach, we focused on the important but elusive class of low-frequency, moderately penetrant variants by performing disease model-based variant filtering of whole exome sequence data from 75 hereditary PCa families.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate up to one-third of all protein-coding genes including genes relevant to cancer. Variants within miRNAs have been reported to be associated with prognosis, survival, response to chemotherapy across cancer types, in vitro parameters of cell growth, and altered risks for development of cancer. Five miRNA variants have been reported to be associated with risk for development of colorectal cancer (CRC).

View Article and Find Full Text PDF

Objectives: Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression.

View Article and Find Full Text PDF

Tumor-infiltrating regulatory T cells (Tregs) promote immune evasion and are associated with poor disease outcome in patients affected by various malignancies. We have recently demonstrated that several, inherited single nucleotide polymorphisms affecting Treg-related genes influence the survival of ovarian cancer patients, providing novel insights into possible mechanisms of immune escape.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants.

Methods: We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci.

View Article and Find Full Text PDF

Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer.

View Article and Find Full Text PDF

Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored.

View Article and Find Full Text PDF

Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic.

View Article and Find Full Text PDF

A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e.

View Article and Find Full Text PDF

Early detection of ovarian cancer is difficult owing to the lack of specific and sensitive tests available. Previously, we found expression of nectin 4 to be increased in ovarian cancer compared with normal ovaries. Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative RT-PCR validated the overexpression of nectin 4 messenger RNA in ovarian cancer compared with normal ovarian cell lines and tissues.

View Article and Find Full Text PDF

We sought to investigate the expression levels of S100A1 in ovarian cancer cell lines and tissues to correlate S100A1 with subtype, stage, grade, and relapse-free survival. S100A1 messenger RNA and protein were up-regulated in ovarian cancer cell lines and tumors compared with normal ovarian cell lines and tissues by gene microarray analysis, reverse transcriptase-polymerase chain reaction, quantitative reverse transcriptase-polymerase chain reaction, and Western immunoblotting. In the study, 63.

View Article and Find Full Text PDF

One reason that ovarian cancer is such a deadly disease is because it is not usually diagnosed until it has reached an advanced stage. In this study, we developed a novel algorithm for group biomarkers identification using gene expression data. Group biomarkers consist of coregulated genes across normal and different stage diseased tissues.

View Article and Find Full Text PDF