Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized.
View Article and Find Full Text PDFMany human diseases are caused by genetic mutations that decrease protein stability. Such mutations may not specifically affect an active site, but can alter protein folding, abundance, or localization. Here we describe a high-throughput cell-based stability assay, IDESA (intra-DHFR enzyme stability assay), where stability is coupled to cell proliferation in the model yeast, Saccharomyces cerevisiae.
View Article and Find Full Text PDFAmmonia oxidation is a central process in the nitrogen cycle. Particularly in marine and estuarine environments, few experiments have been conducted to tease apart the factors influencing their abundance and composition. To investigate the effect of nitrogen and phosphorus availability on ammonia-oxidizing bacteria (AOB), we conducted a nutrient enrichment experiment in a Maine salt marsh and sampled sediment communities in three seasons over 2 years.
View Article and Find Full Text PDF