Am J Physiol Heart Circ Physiol
July 2007
Heme oxygenase-1 (HO-1) is induced in the vasculature in the DOCA-salt model of hypertension in rats. Whereas the HO system and its products may exert vasodilator effects, recent studies have suggested that the HO system may predispose to hypertension. The present study examined the effects of selected components of the HO system, specifically, the HO-1 isozyme and the product bilirubin in the DOCA-salt model of systemic hypertension; the experimental approach employed mutant rodent models, namely, the HO-1(-/-) mouse and the hyperbilirubinemic Gunn rat.
View Article and Find Full Text PDFThere is substantial evidence suggesting that angiotensin II plays an important role in elevating blood pressure of spontaneously hypertensive rats, despite normal plasma renin activity, and that converting enzyme inhibitors (captopril) can effectively normalize blood pressure in the spontaneously hypertensive rats. One mechanism by which angiotensin II induces hypertension is via oxidative stress and endothelin, as seen in subpressor angiotensin II-induced hypertension. In fact, it has been shown that antioxidants lower mean arterial pressure in spontaneously hypertensive rats.
View Article and Find Full Text PDFBackground: The mechanisms by which prolonged cholestasis alters renal hemodynamics and excretory function are unknown but may be related to increased oxidative stress, with subsequent formation of lipid peroxidation-derived products (e.g., F2-isoprostanes) and endothelin (ET).
View Article and Find Full Text PDFSubpressor doses of angiotensin II (SP-Ang II) cause a slow increase in blood pressure in rats as assessed by tail cuff plethysmography (TCP), reflecting either sustained hypertension or an exaggerated pressor response to diverse stimuli. We examined whether subpressor doses of Ang II enhance blood pressure responses to simple stress (handling of trained rats for TCP). We implanted telemetry in Sprague-Dawley rats.
View Article and Find Full Text PDF