Publications by authors named "Melissa Broeks"

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate.

View Article and Find Full Text PDF

The diagnostic evaluation of Diamond Blackfan Anaemia (DBA), an inherited bone marrow failure syndrome characterised by erythroid hypoplasia, is challenging because of a broad phenotypic variability and the lack of functional screening tests. In this study, we explored the potential of untargeted metabolomics to diagnose DBA. In dried blood spot samples from 18 DBA patients and 40 healthy controls, a total of 1752 unique metabolite features were identified.

View Article and Find Full Text PDF

Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH.

View Article and Find Full Text PDF

The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) is to date still challenging. In particular, there is little knowledge on the broad metabolic impact of many of the molecular defects underlying RHA. In this study we explored the potential of untargeted metabolomics to diagnose a relatively common type of RHA: Pyruvate Kinase Deficiency (PKD).

View Article and Find Full Text PDF

Untargeted metabolomics may become a standard approach to address diagnostic requests, but, at present, data interpretation is very labor-intensive. To facilitate its implementation in metabolic diagnostic screening, we developed a method for automated data interpretation that preselects the most likely inborn errors of metabolism (IEM). The input parameters of the knowledge-based algorithm were (1) weight scores assigned to 268 unique metabolites for 119 different IEM based on literature and expert opinion, and (2) metabolite Z-scores and ranks based on direct-infusion high resolution mass spectrometry.

View Article and Find Full Text PDF

The reversible oxidation of L-malate to oxaloacetate is catalyzed by NAD(H)-dependent malate dehydrogenase (MDH). MDH plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle. These metabolic processes are important in mitochondrial NADH supply for oxidative phosphorylation.

View Article and Find Full Text PDF