Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes.
View Article and Find Full Text PDFThe growth of resistance to multiple herbicides in grass weeds is a major threat to global cereal production and in the UK, is epitomized by the loss of control of blackgrass (Alopecurus myosuroides), causing losses in winter wheat production equating to 5% of national consumption. With an urgent need to develop new black-grass management tools, we have developed a lateral flow assay (LFA) that can predict resistance to multiple herbicides within 10 min.
View Article and Find Full Text PDFSafeners such as metcamifen and benoxacor are widely used in maize to enhance the selectivity of herbicides through the induction of key detoxifying enzymes, notably cytochrome P450 monooxygenases (CYPs). Using a combination of transcriptomics, proteomics, and functional assays, the safener-inducible CYPs responsible for herbicide metabolism in this globally important crop have been identified. A total of 18 CYPs belonging to clans 71, 72, 74, and 86 were safener-induced, with the respective enzymes expressed in yeast and screened for activity toward thiadiazine (bentazon), sulfonylurea (nicosulfuron), and triketone (mesotrione and tembotrione) chemistries.
View Article and Find Full Text PDFThe evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione--transferase (GSTF1) as a functional biomarker of MHR in black-grass (). This study provides further insights into the role of GSTF1 in MHR using a combination of chemical and structural biology.
View Article and Find Full Text PDFNon-target site resistance (NTSR) to herbicides in black-grass () results in enhanced tolerance to multiple chemistries and is widespread in Northern Europe. To help define the underpinning mechanisms of resistance, global transcriptome and biochemical analysis have been used to phenotype three NTSR black-grass populations. These comprised NTSR1 black-grass from the classic Peldon field population, which shows broad-ranging resistance to post-emergence herbicides; NTSR2 derived from herbicide-sensitive (HS) plants repeatedly selected for tolerance to pendimethalin; and NTSR3 selected from HS plants for resistance to fenoxaprop--ethyl.
View Article and Find Full Text PDFBackground: Anisantha and Bromus spp. are widespread and difficult to control, potentially due to the evolution of herbicide resistance. In this study, UK populations of four brome species have been tested for the early development of resistance to acetolactate synthase (ALS)-inhibiting herbicides commonly used in their control.
View Article and Find Full Text PDFThe closely related sulphonamide safeners, metcamifen and cyprosulfamide, were tested for their ability to protect rice from clodinafop-propargyl, a herbicide normally used in wheat. While demonstrating that both compounds were equally bioavailable in planta, only metcamifen prevented clodinafop from damaging seedlings, and this was associated with the enhanced detoxification of the herbicide. Transcriptome studies in rice cultures demonstrated that whereas cyprosulfamide had a negligible effect on gene expression over a 4 h exposure, metcamifen perturbed the abundance of 590 transcripts.
View Article and Find Full Text PDFBackground: Herbicide safening in cereals is linked to a rapid xenobiotic response (XR), involving the induction of glutathione transferases (GSTs). The XR is also invoked by oxidized fatty acids (oxylipins) released during plant stress, suggesting a link between these signalling agents and safening. To examine this relationship, a series of compounds modelled on the oxylipins 12-oxophytodienoic acid and phytoprostane 1, varying in lipophilicity and electrophilicity, were synthesized.
View Article and Find Full Text PDFPlants contain large numbers of family 1 UDP-glucose-dependent glycosyltransferases (UGTs), including members that conjugate xenobiotics. Arabidopsis contains 107 UGT genes with 99 family members successfully expressed as glutathione transferase (GST)-fusion proteins in E. coli.
View Article and Find Full Text PDFSafeners are agrochemicals which enhance tolerance to herbicides in cereals including wheat ( L.) by elevating the expression of xenobiotic detoxifying enzymes, such as glutathione transferases (GSTs). When wheat plants were spray-treated with three safener chemistries, namely cloquintocet mexyl, mefenpyr diethyl and fenchlorazole ethyl, an apparently identical subset of GSTs derived from the tau, phi and lambda classes accumulated in the foliage.
View Article and Find Full Text PDFC-Glycosylated flavonoids are biologically active plant natural products linked to dietary health benefits. We have used polyprotein expression technology to reconstruct part of the respective biosynthetic pathway in tobacco and yeast, such that dihydrochalcone and flavanone precursors are directly converted to C-glycosides. The polyprotein system developed facilitated the simple and efficient co-expression of pathway enzymes requiring different sub-cellular localization in both plants and yeast.
View Article and Find Full Text PDFIsoschaftoside, an allelopathic di-C-glycosylflavone from Desmodium spp. root exudates, is biosynthesised through sequential glucosylation and arabinosylation of 2-hydroxynaringenin with UDP-glucose and UDP-arabinose. Complete conversion to the flavone requires chemical dehydration implying a dehydratase enzyme has a role in vivo to complete the biosynthesis.
View Article and Find Full Text PDFPlants respond to synthetic chemicals by eliciting a xenobiotic response (XR) that enhances the expression of detoxifying enzymes such as glutathione transferases (GSTs). In agrochemistry, the ability of safeners to induce an XR is used to increase herbicide detoxification in cereal crops. Based on the responsiveness of the model plant Arabidopsis thaliana to the rice safener fenclorim (4,6-dichloro-2-phenylpyrimidine), a series of related derivatives was prepared and tested for the ability to induce GSTs in cell suspension cultures.
View Article and Find Full Text PDFGlutathione transferases (GSTs) catalyse the detoxification of a range of xenobiotics, including crop protection agents in plants. Recent studies in cultures of the model plant Arabidopsis thaliana have shown that the herbicide safener fenclorim (4,6-dichloro-2-phenylpyrimidine) is conjugated by GSTs acting in the cytosol which are induced in response to this chemical treatment. The primary glutathione conjugates are then hydrolyzed to S-(4-chloro-2-phenylpyrimidin-6-yl)-cysteine, which after accumulating transiently in the cells and medium is then metabolized by a series of competing lyases and transferases, including GSTs, to a series of polar derivatives.
View Article and Find Full Text PDFFlavonoids normally accumulate in plants as O-glycosylated derivatives, but several species, including major cereal crops, predominantly synthesize flavone-C-glycosides, which are stable to hydrolysis and are biologically active both in planta and as dietary components. An enzyme (OsCGT) catalyzing the UDP-glucose-dependent C-glucosylation of 2-hydroxyflavanone precursors of flavonoids has been identified and cloned from rice (Oryza sativa ssp. indica), with a similar protein characterized in wheat (Triticum aestivum L.
View Article and Find Full Text PDFThe safener fenclorim (4,6-dichloro-2-phenylpyrimidine) increases tolerance to chloroacetanilide herbicides in rice by enhancing the expression of detoxifying glutathione S-transferases (GSTs). Fenclorim also enhances GSTs in Arabidopsis thaliana, and while investigating the functional significance of this induction in suspension cultures, we determined that these enzymes glutathionylated the safener. The resulting S-(fenclorim)-glutathione conjugate was sequentially processed to S-(fenclorim)-gamma-glutamyl-cysteine and S-(fenclorim)-cysteine (FC), the latter accumulating in both the cells and the medium.
View Article and Find Full Text PDFThe glucosylation of pollutant and pesticide metabolites in plants controls their bioactivity and the formation of subsequent chemical residues. The model plant Arabidopsis thaliana contains >100 glycosyltransferases (GTs) dedicated to small-molecule conjugation and, whereas 44 of these enzymes catalyze the O-glucosylation of chlorinated phenols, only one, UGT72B1, shows appreciable N-glucosylating activity toward chloroanilines. UGT72B1 is a bifunctional O-glucosyltransferase (OGT) and N-glucosyltransferase (NGT).
View Article and Find Full Text PDFPlant Biotechnol J
September 2007
Over-expression and transposon mutagenesis in root cultures of Arabidopsis thaliana demonstrated the importance of the family 1 glycosyltransferase UGT72B1 in catalysing the N-glucosylation of the persistent pollutant 3,4-dichloroaniline (DCA). In phytotoxicity studies with DCA in seedlings, over-expression of UGT72B1 enhanced sensitivity, whereas the knockouts were more resistant than the controls. In contrast, manipulating the expression of UGT72B1 had no effect on the O-glucosylation, or toxicity, of chlorophenols.
View Article and Find Full Text PDFIn wheat (Triticum aestivum L.), treatment with herbicide safeners enhances the expression of enzymes involved in pesticide detoxification and reduces crop sensitivity to herbicides. Since these same enzymes are involved in plant secondary metabolism, it was of interest to determine whether or not the safener cloquintocet mexyl perturbed phenolic metabolism in wheat seedlings.
View Article and Find Full Text PDFThe Arabidopsis type 1 UDP-glucose-dependent glucosyltransferase UGT72B1 is highly active in conjugating the persistent pollutants 3,4-dichloroaniline (DCA) and 2,4,5-trichlorophenol (TCP). To determine its importance in detoxifying xenobiotics in planta, mutant plants where the respective gene has been disrupted by T-DNA insertion have been characterized. Extracts from the knockout ugt72B1 plants showed radically reduced conjugating activity towards DCA and TCP and the absence of immunodetectable UGT72B1 protein.
View Article and Find Full Text PDF