Publications by authors named "Melissa Bieman"

Sequence-specific RNA binding proteins can induce the degradation of mRNAs through their ability to recruit proteins that trigger transcript destabilization. For example, Vts1p, the S. cerevisiae member of the Smaug family of RNA binding proteins, is thought to induce transcript decay by recruiting the Ccr4p-Pop2p-Not deadenylase complex to target mRNAs.

View Article and Find Full Text PDF

The Smaug family of sequence-specific RNA binding proteins regulates mRNA translation and degradation by binding to consensus stem-loop structures in target mRNAs. Vts1p is a member of the Smaug protein family that regulates the stability of target transcripts in Saccharomyces cerevisiae. Here we focus on the mechanism of Vts1p-mediated mRNA decay.

View Article and Find Full Text PDF

The early transcriptional hierarchy that subdivides the vertebrate hindbrain into seven to eight segments, the rhombomeres (r1-r8), is largely unknown. The Kreisler (MafB, Krml1, Val) gene is earliest gene expressed in an r5/r6-restricted manner and is essential for r5 and r6 development. We have identified the S5 regulatory element that directs early Kreisler expression in the future r5/r6 domain in 0-10 somite stage embryos.

View Article and Find Full Text PDF

The yeast sir2 gene plays a central role in mediating gene silencing and DNA repair in this organism. The mouse sir2alpha gene is closely related to its yeast homologue and encodes a nuclear protein expressed at particularly high levels in embryonic stem (ES) cells. We used homologous recombination to create ES cells null for sir2alpha and found that these cells did not have elevated levels of acetylated histones and did not ectopically express silent genes.

View Article and Find Full Text PDF