Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment.
View Article and Find Full Text PDFMelanoma is the fifth most common cancer in the United States and the deadliest of all skin cancers. Even with recent advancements in treatment, there is still a 13% two-year recurrence rate, with approximately 30% of recurrences being distant metastases. Identifying patients at high risk for recurrence or advanced disease is critical for optimal clinical decision-making.
View Article and Find Full Text PDFEarly detection of lung cancer (LC) significantly increases the likelihood of successful treatment and improves LC survival rates. Currently, screening (mainly low-dose CT scans) is recommended for individuals at high risk. However, the recent increase in the number of LC cases unrelated to the well-known risk factors, and the high false-positive rate of low-dose CT, indicate a need to develop new, non-invasive methods for LC detection.
View Article and Find Full Text PDFBackground: Circulating tumor DNA (ctDNA) may complement radiography for interim assessment of patients with cancer.
Objective: Our objective was to explore the relationship between changes in plasma ctDNA versus radiographic imaging among patients with metastatic melanoma.
Methods: Using the Idylla system, we measured B-Raf proto-oncogene (BRAF) V600 ctDNA in plasma from 15 patients with BRAF V600E/K-positive primary tumors undergoing standard-of-care monitoring, including cross-sectional computed tomography (CT) imaging.
Background: Differential Scanning Calorimetry (DSC) is a technique traditionally used to study thermally induced macromolecular transitions, and it has recently been proposed as a novel approach for diagnosis and monitoring of several diseases. We report a pilot study applying Thermal Liquid Biopsy (TLB, DSC thermograms of plasma samples) as a new clinical approach for diagnostic assessment of melanoma patients.
Methods: Multiparametric analysis of DSC thermograms of patient plasma samples collected during treatment and surveillance (63 samples from 10 patients) were compared with clinical and diagnostic imaging assessment to determine the utility of thermograms for diagnostic assessment in melanoma.