As the sister group to all other animals, ctenophores (comb jellies) are important for understanding the emergence and diversification of numerous animal traits. Efforts to explore the evolutionary processes that promoted diversification within Ctenophora are hindered by undersampling genomic diversity within this clade. To address this gap, we present the sequence, assembly and initial annotation of the genome of .
View Article and Find Full Text PDFWildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts.
View Article and Find Full Text PDFInnexins facilitate cell-cell communication by forming gap junctions or nonjunctional hemichannels, which play important roles in metabolic, chemical, ionic, and electrical coupling. The lack of knowledge regarding the evolution and role of these channels in ctenophores (comb jellies), the likely sister group to the rest of animals, represents a substantial gap in our understanding of the evolution of intercellular communication in animals. Here, we identify and phylogenetically characterize the complete set of innexins of four ctenophores: Mnemiopsis leidyi, Hormiphora californensis, Pleurobrachia bachei, and Beroe ovata.
View Article and Find Full Text PDFEfforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length.
View Article and Find Full Text PDFThe California ribbed mussel, Mytilus californianus, is an ecosystem engineer crucial for the survival of many marine species inhabiting the intertidal zone of California. Here, we describe the first reference genome for M. californianus and compare it to previously published genomes from three other Mytilus species: M.
View Article and Find Full Text PDFBioeroding sponges interact and compete with corals on tropical reefs. Experimental studies have shown global change alters this biotic interaction, often in favour of the sponge. Ocean acidification in particular increases sponge bioerosion and reduces coral calcification, yet little is known about the molecular basis of these changes.
View Article and Find Full Text PDFExtreme environmental gradients represent excellent study systems to better understand the variables that mediate patterns of genomic variation between populations. They also allow for more accurate predictions of how future environmental change might affect marine species. The Persian/Arabian Gulf is extreme in both temperature and salinity, whereas the adjacent Gulf of Oman has conditions more typical of tropical oceans.
View Article and Find Full Text PDFTunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, "inflated" atrial chamber.
View Article and Find Full Text PDFBackground: Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated.
Results: Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, and Cross-species analysis of regulatory elements suggests that -regulatory architecture is largely conserved between these highly divergent species.
Addressing the origin of axial-patterning machinery is essential for understanding the evolution of animal form. Historically, sponges, a lineage that branched off early in animal evolution, were thought to lack Hox and ParaHox genes, suggesting that these critical axial-patterning genes arose after sponges diverged. However, a recent study has challenged this long-held doctrine by claiming to identify ParaHox genes (Cdx family) in two calcareous sponge species, Sycon ciliatum and Leucosolenia complicata.
View Article and Find Full Text PDFThe integrity of science requires that the process be based on sound experimental design and objective methodology. Strategies that increase reproducibility and transparency in science protect this integrity by reducing conscious and unconscious biases. Given the large number of analysis options and the constant development of new methodologies in phylogenetics, this field is one that would particularly benefit from more transparent research design.
View Article and Find Full Text PDFMitochondrial DNA B Resour
November 2018
The complete mitogenome of sp. EZ has been described and fully annotated in this study. Phylogenetic analysis of cytochrome c oxidase subunit I (COI) from six species confirms that our sample is .
View Article and Find Full Text PDFThe origin of novel traits can promote expansion into new niches and drive speciation. Ctenophores (comb jellies) are unified by their possession of a novel cell type: the colloblast, an adhesive cell found only in the tentacles. Although colloblast-laden tentacles are fundamental for prey capture among ctenophores, some species have tentacles lacking colloblasts and others have lost their tentacles completely.
View Article and Find Full Text PDFSpecies inhabiting the North American west coast intertidal must tolerate an extremely variable environment, with large fluctuations in both temperature and salinity. Uncovering the mechanisms for this tolerance is key to understanding species' persistence. We tested for differences in salinity tolerance between populations of Tigriopus californicus copepods from locations in northern (Bodega Reserve) and southern (San Diego) California known to differ in temperature, precipitation and humidity.
View Article and Find Full Text PDFTrade-offs may influence both physiological and evolutionary responses to co-occurring stressors, but their effects on both plastic and adaptive responses to climate change are poorly understood. To test for genetic and physiological trade-offs incurred in tolerating multiple stressors, we hybridized two populations of the intertidal copepod that were divergent for both heat and salinity tolerance. Starting in the F generation, we selected for increased tolerance of heat, low salinity, and high salinity in replicate lines.
View Article and Find Full Text PDFPhysiological plasticity and adaptive evolution may facilitate persistence in a changing environment. As a result, there is an interest in understanding species' capacities for plastic and evolved responses, and the mechanisms by which these responses occur. Transcriptome sequencing has become a powerful tool for addressing these questions, providing insight into otherwise unobserved effects of changing conditions on organismal physiology and variation in these effects among individuals and populations.
View Article and Find Full Text PDFSponges are among the most species-rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model-based approach.
View Article and Find Full Text PDFConflicting patterns of population differentiation between the mitochondrial and nuclear genomes (mito-nuclear discordance) have become increasingly evident as multilocus data sets have become easier to generate. Incomplete lineage sorting (ILS) of nucDNA is often implicated as the cause of such discordance, stemming from the large effective population size of nucDNA relative to mtDNA. However, selection, sex-biased dispersal and historical demography can also lead to mito-nuclear discordance.
View Article and Find Full Text PDF