Invasive vectors can induce dramatic changes in disease epidemiology. While viral emergence following geographical range expansion of a vector is well known, the influence a vector can have at the level of the host's pathobiome is less well understood. Taking advantage of the formerly heterogeneous spatial distribution of the ectoparasitic mite that acts as potent virus vector among honeybees , we investigated the impact of its recent global spread on the viral community of honeybees in a retrospective study of historical samples.
View Article and Find Full Text PDFWestern honeybee populations, Apis mellifera, in Europe have been known to survive infestations of the ectoparasitic mite, Varroa destructor, by means of natural selection. Proposed mechanisms in literature have been focused on the management of this parasite, however literature remains scare on the differences in viral ecology between colonies that have adapted to V. destructor and those that are consistently treated for it.
View Article and Find Full Text PDFCell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite.
View Article and Find Full Text PDFThe parasitic mite, Varroa destructor, has shaken the beekeeping and pollination industries since its spread from its native host, the Asian honey bee (Apis cerana), to the naïve European honey bee (Apis mellifera) used commercially for pollination and honey production around the globe. Varroa is the greatest threat to honey bee health. Worrying observations include increasing acaricide resistance in the varroa population and sinking economic treatment thresholds, suggesting that the mites or their vectored viruses are becoming more virulent.
View Article and Find Full Text PDFThe ectoparasitic mite is a key factor for colony losses in European honey bee subspecies (), but it is also known that some host populations have adapted to the mite by means of natural selection. The role of a shorter host brood postcapping period in reducing mite reproductive success has been investigated in other surviving subspecies, however its role in the adaptation of European honey bee populations has not been addressed. Here, we use a common garden approach to compare the length of the worker brood postcapping period in a Norwegian surviving honey bee population with the postcapping period of a local susceptible population.
View Article and Find Full Text PDFBackground: Managed, feral and wild populations of European honey bee subspecies, , are currently facing severe colony losses globally. There is consensus that the ectoparasitic mite , that switched hosts from the Eastern honey bee to the Western honey bee , is a key factor driving these losses. For >20 years, breeding efforts have not produced European honey bee colonies that can survive infestations without the need for mite control.
View Article and Find Full Text PDF