Publications by authors named "Melissa A Maurer-Jones"

Plastic pollution, a major environmental crisis, has a variety of consequences for various organisms within aquatic systems. Beyond the direct toxicity, plastic pollution has the potential to absorb biological toxins and invasive microbial species. To better understand the capability of environmental plastic debris to adsorb these species, we investigated the binding of the model protein bovine serum albumin (BSA) to polyethylene (PE) films at various stages of photodegradation.

View Article and Find Full Text PDF

Identifying the sources and fate of microplastics in natural systems has garnered a great deal of attention because of their implications for ecosystem health. This work characterizes the size fraction, morphology, color, and polymer composition of microplastics in western Lake Superior and its adjacent harbor sampled in August and September 2021. The results reveal that the overall microplastic counts are similar, with the harbor stations ranging from 0.

View Article and Find Full Text PDF

Polylactic acid (PLA) and bioplastics alike have a designed degradability to avoid the environmental buildup that petroplastics have created. Yet, this designed biotic-degradation has typically been characterized in ideal conditions. This study seeks to relate the abiotic to the biotic degradation of PLA to accurately represent the degradation pathways bioplastics will encounter, supposing their improper disposal in the environment.

View Article and Find Full Text PDF

One solution to minimizing plastic pollution is to improve reuse and recycling strategies. Recycling, however, is limited by the overall degradation of plastics being used, and current techniques for monitoring this plastic degradation fail to observe this in its early stages, which is key for optimizing reusability. This research seeks to develop an inexpensive, reproducible, and nondestructive technique for monitoring degradation of polyethylene (PE) and polypropylene (PP) materials using Nile red as a fluorescent probe.

View Article and Find Full Text PDF

Plastic pollution is a major threat facing our environment. To understand the full effects, we must first characterize how plastics break down in environmental systems. Heretofore, there has been little work examining how exposure to sewage sludge facilitates the degradation of plastics, particularly of plastics that have been previously weathered.

View Article and Find Full Text PDF

Polypropylene (PP) and polyethylene (PE) are commonly used polyolefins in a variety of applications, which have resulted in their accumulation in the environment. Once in the environment, these polymers undergo various chemical and physical transformations as the result of environmental stressors such as sunlight. While photodegradation has been studied for decades, there are key gaps in knowledge on the phototransformations of polyolefins that occur under aqueous conditions.

View Article and Find Full Text PDF

Plastic waste has the potential for significant consequences on various ecosystems; yet, there are gaps in our understanding of the interaction of bacteria with polymer additives. We studied the impact of representative additive molecules to the viability and cell function of Shewanella oneidensis MR-1. Specifically, we explored the toxicity of three bisphenols (bisphenol A (BPA), bisphenol S (BPS), and tetrabromo bisphenol A (TBBPA)) and two diesters (dibutyl sebacate (DBS) and diisobutyl phthalate (DIBP)) in order to evaluate the generalizability of toxicity based on similar molecular structures.

View Article and Find Full Text PDF

Aquatic plastic debris experiences environmental stressors that lead to breakdown into smaller micro-sized plastic particles. This work quantified microplastic formation with the environmental stressors of UV irradiation followed by mechanical strain induced by movement of water with an emphasis on connecting our results to changes in the materials chemical/physical properties. Polypropylene, polyethylene, and polyethylene terephthalate thin films and polypropylene injection-molded sheets were irradiated with 254 nm UV light, placed into aquatic microcosms, collected through sieving, and counted under a microscope.

View Article and Find Full Text PDF

Biodegradable polyesters are being increasingly used to replace conventional, nondegradable polymers in agricultural applications such as plastic film for mulching. For many of these applications, poly(butylene adipate- co-terephthalate) (PBAT) is a promising biodegradable material. However, PBAT is also susceptible to photochemical transformations.

View Article and Find Full Text PDF

Platelet exocytosis is regulated partially by the granular/cellular membrane lipids and proteins. Some platelets contain a membrane-bound tube, called an open canalicular system (OCS), which assists in granular release events and increases the membrane surface area for greater spreading. The OCS is not found in all species, and variations in membrane composition can cause changes in platelet secretion.

View Article and Find Full Text PDF

Understanding of nanoparticle impacts on critical bacteria functions allows us to gain a mechanistic understanding of toxicity and guides us toward design rules for creating safe nanomaterials. Herein, biofilm formation, a general bacteria function, and riboflavin secretion, a species-specific function, were monitored in Shewanella oneidensis, a metal reducing bacterium, following exposure to a variety of TiO2 nanoparticle types (synthesized, Aeroxide P25, and T-Eco). Transmission electron microscopy (TEM) images show that dosed nanoparticles are in close proximity to the bacteria, but they are not internalized.

View Article and Find Full Text PDF

While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address.

View Article and Find Full Text PDF

Nanomaterials have the promise of revolutionizing current treatment and diagnosis of diseases, which has led to 33 nanotherapeutics drugs currently on the market and many more in various stages of clinical trials. With an increasing number of products available and in development, along with the unique, emergent properties of the nanoparticle therapeutics themselves, regulatory agencies are now faced with decisions regarding the regulation of such novel technologies. Regulatory guidance, particularly in pre-clinical stages, has the potential to facilitate quick and safe development of these novel materials, but new regulation beyond what is currently in place must be justified in a clear and distinctive toxic response.

View Article and Find Full Text PDF

Nanoparticle toxicology, an emergent field, works toward establishing the hazard of nanoparticles, and therefore their potential risk, in light of the increased use and likelihood of exposure. Analytical chemists can provide an essential tool kit for the advancement of this field by exploiting expertise in sample complexity and preparation as well as method and technology development. Herein, we discuss experimental considerations for performing in vitro nanoparticle toxicity studies, with a focus on nanoparticle characterization, relevant model cell systems, and toxicity assay choices.

View Article and Find Full Text PDF

Understanding the nanoparticle-cell interaction is critical for the safe development of nanomaterials. Herein, we explore the impact of three metal oxide nanoparticles, nonporous Stober SiO(2), mesoporous SiO(2), and nonporous anatase TiO(2) nanoparticles, on primary culture mast cells. Using transmission electron microscopy and inductively coupled plasma atomic emission spectroscopy, we demonstrate that each class of nanoparticle is internalized by the mast cells, localizing primarily in the secretory granules, with uptake efficiency increasing in the following order: nonporous SiO(2) < porous SiO(2) < nonporous TiO(2) nanoparticles.

View Article and Find Full Text PDF

A mast cell/fibroblast co-culture system is used as a model to assess the toxicity of Au nanoparticles over the course of 72 hours of exposure. Cellular uptake of nanoparticles was found to increase over the 72 hr exposure period and the nanoparticles localized within granular bodies of the primary culture mast cells. These granules were found to increase in volume with the addition of nanoparticles.

View Article and Find Full Text PDF

A total of six nanotherapeutic formulations are already approved for medical use and more are in the approval pipeline currently. Despite the massive research effort in nanotherapeutic materials, there is relatively little information about the toxicity of these materials or the tools needed to assess this toxicity. Recently, the scientific community has begun to respond to the paucity of information by investing in the field of nanoparticle toxicology.

View Article and Find Full Text PDF