Recombinant vesicular stomatitis virus (VSV) is a promising therapeutic vaccine platform. Using a transgenic mouse model of chronic hepatitis B virus (HBV) infection, we evaluated the therapeutic potential of a VSV vector expressing the HBV middle surface envelope glycoprotein (MS). VSV-MS immunization generated HBV-specific CD8 T cell and antibody responses in transgenic mice that express low HBV antigen levels.
View Article and Find Full Text PDFChronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection affect >500 million people worldwide and are significant causes of liver cirrhosis and hepatocellular carcinoma. The pathogenesis of HBV and HCV infection can vary widely with respect to the outcome of initial infection to self-resolving acute or chronic disease, the extent of viremia and liver inflammation during chronic infection, and the eventual development of liver cirrhosis and hepatocellular carcinoma. The host immune response is an important factor in the variable consequences of these infections, because the innate and adaptive intrahepatic antiviral responses are an intricate balance of immune effector cells and cytokines that control virus replication but can also cause liver damage.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) is a highly cytopathic virus being developed as a vaccine vector due to its ability to induce strong protective T cell and antibody responses after a single dose. However, little is known regarding the mechanisms underlying the potent immune responses elicited by VSV. We previously generated a VSV vector expressing the hepatitis B virus middle envelope surface glycoprotein (MS) that induces strong MS-specific T cell and antibody responses in mice.
View Article and Find Full Text PDFBackground & Aims: T-helper (Th)17 cells that secrete interleukin (IL)-22 have immunomodulatory and protective properties in the liver and other tissues. IL-22 induces expression of proinflammatory genes but is also mitogenic and antiapoptotic in hepatocytes. Therefore, it could have multiple functions in the immune response to hepatitis B virus (HBV).
View Article and Find Full Text PDFAs one of the world's most common infectious diseases, hepatitis B virus (HBV) is a serious worldwide public health problem, with HBV-associated liver disease accounting for more than half a million deaths each year. Although there is an effective prophylactic vaccine currently available to prevent infection, it has a number of characteristics that are suboptimal: multiple doses are needed to induce long-lasting immunity, immunity declines over time, it does not elicit protection in some individuals, and it is not effective therapeutically. We produced a recombinant vesicular stomatitis virus (VSV)-based vaccine vector expressing the HBV middle envelope surface protein (MS) and found that this vector was able to efficiently generate a strong HBs-specific antibody response following a single immunization in mice.
View Article and Find Full Text PDF