Publications by authors named "Melisande E Konadu"

Self-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g.

View Article and Find Full Text PDF

Background: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity.

View Article and Find Full Text PDF

Background: Sex-specific differences in brain connectivity were found in various neuroimaging studies, though little is known about sex steroid effects on insular functioning. Based on well-characterized sex differences in emotion regulation, interoception and higher-level cognition, gender-dysphoric individuals receiving gender-affirming hormone therapy represent an interesting cohort to investigate how sex hormones might influence insular connectivity and related brain functions.

Methods: To analyze the potential effect of sex steroids on insular connectivity at rest, 11 transgender women, 14 transgender men, 20 cisgender women, and 11 cisgender men were recruited.

View Article and Find Full Text PDF

The sex hormones testosterone and estradiol influence brain structure and function and are implicated in the pathogenesis, prevalence and disease course of major depression. Recent research employing gender-affirming hormone treatment (GHT) of gender dysphoric individuals and utilizing positron emission tomography (PET) indicates increased serotonin transporter binding upon high-dosages of testosterone treatment. Here, we investigated the effects of GHT on levels of monoamine oxidase A (MAO-A), another key target of antidepressant treatment.

View Article and Find Full Text PDF

Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable major depression. Whereas ketamine's immediate psychomimetic side-effects were linked to glutamate changes, proton MRS (H-MRS) showed an association between the ratio of glutamate and glutamine and delayed antidepressant effect emerging ∼2 h after ketamine administration. While most H-MRS studies focused on anterior cingulate, recent functional MRI connectivity studies revealed an association between ketamine's antidepressant effect and disturbed connectivity patterns to the posterior cingulate cortex (PCC), and related PCC dysfunction to rumination and memory impairment involved in depressive pathophysiology.

View Article and Find Full Text PDF

Introduction: Converging evidence suggests that ketamine elicits antidepressant effects enhanced neuroplasticity precipitated by a surge of glutamate and modulation of GABA. Magnetic resonance spectroscopic imaging (MRSI) illustrates changes to cerebral glutamate and GABA immediately following ketamine administration during dissociation. However, few studies assess subacute changes in the first hours following application, when ketamine's antidepressant effects emerge.

View Article and Find Full Text PDF