Publications by authors named "Melisa L Budde"

Background: A small percentage of human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected macaques control virus replication without antiretroviral treatment. The major determinant of this control is host expression of certain major histocompatibility complex alleles. However, this association is incompletely penetrant, suggesting that additional loci modify the major histocompatibility complex's protective effect.

View Article and Find Full Text PDF

Background: CD8+ T cell responses, restricted by major histocompatibility complex (MHC) class I molecules, are critical to controlling human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) replication. Previous studies have used MHC-matched siblings and monozygotic twins to evaluate genetic and stochastic influences on HIV-specific T cell responses and viral evolution. Here we used a genetically restricted population of Mauritian cynomolgus macaques (MCM) to characterize T cell responses within nine pairs of MHC-matched animals.

View Article and Find Full Text PDF

The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection.

View Article and Find Full Text PDF

The presence of certain MHC class I alleles is correlated with remarkable control of HIV and SIV, indicating that specific CD8 T cell responses can effectively reduce viral replication. It remains unclear whether epitopic breadth is an important feature of this control. Previous studies have suggested that individuals heterozygous at the MHC class I loci survive longer and/or progress more slowly than those who are homozygous at these loci, perhaps due to increased breadth of the CD8 T cell response.

View Article and Find Full Text PDF

Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8(+) T cells, but it is not clear whether particular CD8(+) T cell responses or a broad repertoire of epitope-specific CD8(+) T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239.

View Article and Find Full Text PDF

CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag₃₈₆₋₃₉₄GW9, Nef₁₀₃₋₁₁₁RM9, and Rev₅₉₋₆₈SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev₅₉₋₆₈SP10 was associated with delayed accumulation of variants in Gag₃₈₆₋₃₉₄GW9 but had no effect on variation within Nef₁₀₃₋₁₁₁RM9.

View Article and Find Full Text PDF

Simian immunodeficiency virus (SIV)-infected macaques are the preferred animal model for human immunodeficiency virus (HIV) vaccines that elicit CD8(+) T cell responses. Unlike humans, whose CD8(+) T cell responses are restricted by a maximum of six HLA class I alleles, macaques express up to 20 distinct major histocompatibility complex class I (MHC-I) sequences. Interestingly, only a subset of macaque MHC-I sequences are transcriptionally abundant in peripheral blood lymphocytes.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) class I alleles of nonhuman primates have been associated with disease susceptibility, resistance, and resolution. Here, using high-resolution pyrosequencing, we characterized MHC class I transcripts expressed in Mauritian cynomolgus macaques (MCM), a nonhuman primate population with restricted MHC diversity. Using this approach, we identified 67 distinct MHC class I transcripts encoded by the seven most frequent MCM MHC class I haplotypes, 40 (60%) of which span the complete open reading frames.

View Article and Find Full Text PDF

Simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infection results in an early and enduring depletion of intestinal CD4(+) T cells. SIV and HIV bind integrin alpha4beta7, thereby facilitating infection of lymphocytes that home to the gut-associated lymphoid tissue (GALT). Using an ex vivo flow cytometry assay, we found that SIVmac239-infected cells expressed significantly lower levels of integrin alpha4beta7 than did uninfected cells.

View Article and Find Full Text PDF

Live-attenuated vaccination with simian immunodeficiency virus (SIV) SIVmac239Deltanef is the most successful vaccine product tested to date in macaques. However, the mechanisms that explain the efficacy of this vaccine remain largely unknown. We utilized an ex vivo viral suppression assay to assess the quality of the immune response in SIVmac239Deltanef-immunized animals.

View Article and Find Full Text PDF

Expression of the proendocrine gene neurogenin 3 (Ngn3) is required for the development of pancreatic islets. To better characterize the molecular events regulated by Ngn3 during development, we have determined the expression profiles of murine embryonic stem cells (mESCs) uniformly induced to overexpress Ngn3. An mESC line was created in order to induce Ngn3 by adding doxycycline to the culture medium.

View Article and Find Full Text PDF