Publications by authors named "Melinda Ternei"

Gonorrhea, which is caused by , is the second most reported sexually transmitted infection worldwide. The increasing appearance of isolates that are resistant to approved therapeutics raises the concern that gonorrhea may become untreatable. Here, we serendipitously identified oxydifficidin as a potent antibiotic through the observation of a contaminant in a lawn of .

View Article and Find Full Text PDF

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products.

View Article and Find Full Text PDF

The capture of metagenomic DNA in large clone libraries provides the opportunity to study microbial diversity that is inaccessible using culture-dependent methods. In this study, we harnessed nuclease-deficient Cas9 to establish a CRISPR counter-selection interruption circuit (CCIC) that can be used to retrieve target clones from complex libraries. Combining modern sequencing methods with CCIC cloning allows for rapid physical access to the genetic diversity present in natural ecosystems.

View Article and Find Full Text PDF

Bacterial genomes contain large reservoirs of biosynthetic gene clusters (BGCs) that are predicted to encode unexplored natural products. Heterologous expression of previously unstudied BGCs should facilitate the discovery of additional therapeutically relevant bioactive molecules from bacterial culture collections, but the large-scale manipulation of BGCs remains cumbersome. Here, we describe a method to parallelize the identification, mobilization and heterologous expression of BGCs.

View Article and Find Full Text PDF

In natural product discovery programs, the power of synthetic chemistry is often leveraged for the total synthesis and diversification of characterized metabolites. The synthesis of structures that are bioinformatically predicted to arise from uncharacterized biosynthetic gene clusters (BGCs) provides a means for synthetic chemistry to enter this process at an early stage. The recent identification of non-ribosomal peptides (NRPs) containing multiple ρ-aminobenzoic acids (PABAs) led us to search soil metagenomes for BGCs that polymerize PABA.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs).

View Article and Find Full Text PDF

Natural products are a major source of new antibiotics. Here we utilize biosynthetic instructions contained within metagenome-derived congener biosynthetic gene clusters (BGCs) to guide the synthesis of improved antibiotic analogues. Albicidin and cystobactamid are the first members of a new class of broad-spectrum ρ-aminobenzoic acid (PABA)-based antibiotics.

View Article and Find Full Text PDF

Bacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data.

View Article and Find Full Text PDF

Sequencing of DNA extracted from environmental samples can provide key insights into the biosynthetic potential of uncultured bacteria. However, the high complexity of soil metagenomes, which can contain thousands of bacterial species per gram of soil, imposes significant challenges to explore secondary metabolites potentially produced by rare members of the soil microbiome. Here, we develop a targeted sequencing workflow termed CONKAT-seq (co-occurrence network analysis of targeted sequences) that detects physically clustered biosynthetic domains, a hallmark of bacterial secondary metabolism.

View Article and Find Full Text PDF

The growing threat of antibiotic resistance necessitates the discovery of antibiotics that are active against resistant pathogens. Calcium-dependent antibiotics are a small family of structurally diverse acidic lipopeptides assembled by nonribosomal peptide synthetases (NRPSs) that are known to display various modes of action against antibiotic-resistant pathogens. Here we use NRPS adenylation (AD) domain sequencing to guide the identification, recovery, and cloning of the cde biosynthetic gene cluster from a soil metagenome.

View Article and Find Full Text PDF

Most natural product biosynthetic gene clusters identified in bacterial genomic and metagenomic sequencing efforts are silent under laboratory growth conditions. Here, we describe a scalable biosynthetic gene cluster activation method wherein the gene clusters are disassembled at interoperonic regions in vitro using CRISPR/Cas9 and then reassembled with PCR-amplified, short DNAs, carrying synthetic promoters, using transformation assisted recombination (TAR) in yeast. This simple, cost-effective, and scalable method allows for the simultaneous generation of combinatorial libraries of refactored gene clusters, eliminating the need to understand the transcriptional hierarchy of the silent genes.

View Article and Find Full Text PDF

Rifamycin antibiotics (Rifs) target bacterial RNA polymerases (RNAPs) and are widely used to treat infections including tuberculosis. The utility of these compounds is threatened by the increasing incidence of resistance (Rif). As resistance mechanisms found in clinical settings may also occur in natural environments, here we postulated that bacteria could have evolved to produce rifamycin congeners active against clinically relevant resistance phenotypes.

View Article and Find Full Text PDF

Despite the wide availability of antibiotics, infectious diseases remain a leading cause of death worldwide . In the absence of new therapies, mortality rates due to untreatable infections are predicted to rise more than tenfold by 2050. Natural products (NPs) made by cultured bacteria have been a major source of clinically useful antibiotics.

View Article and Find Full Text PDF

The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) clinical isolates, as well as other Gram-negative bacterial pathogens.

View Article and Find Full Text PDF

The majority of environmental bacteria are not readily cultured in the lab, leaving the natural products they make inaccessible using culture-dependent discovery methods. Cloning and heterologous expression of DNA extracted from environmental samples (environmental DNA, eDNA) provides a means of circumventing this discovery bottleneck. To facilitate the identification of clones containing biosynthetic gene clusters, we developed a model heterologous expression reporter strain Streptomyces albus::bpsA ΔPPTase.

View Article and Find Full Text PDF

Bacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters.

View Article and Find Full Text PDF

Numerous therapeutically relevant small molecules have been identified from the screening of natural products (NPs) produced by environmental bacteria. These discovery efforts have principally focused on culturing bacteria from natural environments rich in biodiversity. We sought to assess the biosynthetic capacity of urban soil environments using a phylogenetic analysis of conserved NP biosynthetic genes amplified directly from DNA isolated from New York City park soils.

View Article and Find Full Text PDF

Here we present a natural product discovery approach, whereby structures are bioinformatically predicted from primary sequence and produced by chemical synthesis (synthetic-bioinformatic natural products, syn-BNPs), circumventing the need for bacterial culture and gene expression. When we applied the approach to nonribosomal peptide synthetase gene clusters from human-associated bacteria, we identified the humimycins. These antibiotics inhibit lipid II flippase and potentiate β-lactam activity against methicillin-resistant Staphylococcus aureus in mice, potentially providing a new treatment regimen.

View Article and Find Full Text PDF

The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-κB, a transcription factor known to play a central role in mediating responses to environmental stimuli.

View Article and Find Full Text PDF

Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs.

View Article and Find Full Text PDF

In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries.

View Article and Find Full Text PDF

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites.

View Article and Find Full Text PDF

Increasing evidence has shown that small-molecule chemistry in microbes (i.e., secondary metabolism) can modulate the microbe-host response in infection and pathogenicity.

View Article and Find Full Text PDF

In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential.

View Article and Find Full Text PDF

Here we investigate bacterial tryptophan dimer (TD) biosynthesis by probing environmental DNA (eDNA) libraries for chromopyrrolic acid (CPA) synthase genes. Functional and bioinformatics analyses of TD clusters indicate that CPA synthase gene sequences diverge in concert with the functional output of their respective clusters, making this gene a powerful tool for guiding the discovery of novel TDs from the environment. Twelve unprecedented TD biosynthetic gene clusters that can be arranged into five groups (A-E) based on their ability to generate distinct TD core substructures were recovered from eDNA libraries.

View Article and Find Full Text PDF