The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.
View Article and Find Full Text PDFTendon injuries and disease are resistant to surgical repair; thus, adjunct therapies are widely investigated, especially mesenchymal stromal cells (MSCs) and, more recently, their extracellular vesicles (MSCdEVs), for example, exosomes. Thought to act on resident and infiltrating immune cells, the role of MSCdEVs in paracrine signaling is of great interest. This study investigated how MSCdEVs differ from analogs derived from resident (tenocyte) populations (TdEV).
View Article and Find Full Text PDFReproductive diseases in mares are a significant cause of subfertility and profound economic loss in the equine industry. Utilizing a 3D in vitro cell culture system that recapitulates the in vivo physiology will reduce time, cost, and welfare concerns associated with in vivo reproductive research in mares. If this 3D model is combined with effective cryopreservation, reproductive research on mares can occur year-round, which is not currently possible in this seasonal species.
View Article and Find Full Text PDF