The need for corneas suitable for transplantation, combined with the decreasing supply, has fueled interest in the development of a corneal replacement. In this study, a collagen-sponge-based stromal equivalent, consisting of human corneal fibroblasts cultured on a type I collagen sponge, was maintained in culture for up to 21 days and characterized with respect to mechanical properties and cellular behavior. The Young's modulus of the stromal equivalent varied from 95 to 370 Pa, and its permeability varied from 5.
View Article and Find Full Text PDFCell matrix interactions are important in understanding the healing characteristics of the cornea after refractive surgery or transplantation. The purpose of this study was to characterize in more detail the evolution of biomechanical and optical properties of a stromal equivalent (stromal fibroblasts cultured in a collagen matrix). Human corneal stromal fibroblasts were cultured in a collagen matrix.
View Article and Find Full Text PDF