Publications by authors named "Melinda G Hollingshead"

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response.

View Article and Find Full Text PDF

Role of DNA damage and demethylation on anticancer activity of DNA methyltransferase inhibitors (DNMTi) remains undefined. We report the effects of DNMT1 gene deletion/disruption (DNMT1) on anticancer activity of a class of DNMTi in vitro, in vivo and in human cancers. The gene deletion markedly attenuated cytotoxicity and growth inhibition mediated by decitabine, azacitidine and 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) in colon and breast cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored the use of [F]FLT PET imaging as a biomarker to assess the effectiveness of the CDK4/6 inhibitor palbociclib in a non-breast cancer model, specifically bladder tumors in mice.
  • - Twenty-four mice with patient-derived bladder tumors were divided into four treatment groups: vehicle, palbociclib, temozolomide, and the combination of both drugs, with their tumor response evaluated using PET imaging on specific days after treatment began.
  • - Results showed that [F]FLT uptake significantly decreased in the palbociclib and combination groups, indicating effective tumor control, while uptake increased and tumor growth occurred in the temozolomide group,
View Article and Find Full Text PDF

Unlabelled: Preclinical studies provide valuable data in the early development of novel drugs for patients with cancer. Many cancer treatment regimens now utilize multiple agents with different targets to delay the emergence of drug-resistant tumor cells, and experimental agents are often evaluated in combination with FDA-approved drugs. The Biological Testing Branch (BTB) of the U.

View Article and Find Full Text PDF

The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMT/MMR patients benefit from TMZ treatment, indicating a need for additional patient selection criteria.

View Article and Find Full Text PDF

Aim: We developed a generic high-performance liquid chromatography mass spectrometry approach for quantitation of small molecule compounds without availability of isotopically labelled standard.

Methods: The assay utilized 50 μL of plasma and offers 8 potential internal standards (IS): acetaminophen, veliparib, busulfan, neratinib, erlotinib, abiraterone, bicalutamide, and paclitaxel. Preparation consisted of acetonitrile protein precipitation and aqueous dilution in a 96 well-plate format.

View Article and Find Full Text PDF

In this article, 5-aza-4'-thio-2'-β-fluoro-2'-deoxycytidine (F-aza-T-dCyd, NSC801845), a novel cytidine analog, is first disclosed and compared with T-dCyd, F-T-dCyd, and aza-T-dCyd in cell culture and mouse xenograft studies in HCT-116 human colon carcinoma, OVCAR3 human ovarian carcinoma, NCI-H23 human NSCLC carcinoma, HL-60 human leukemia, and the PDX BL0382 bladder carcinoma. In three of five xenograft lines (HCT-116, HL-60, and BL-0382), F-aza-T-dCyd was more efficacious than aza-T-dCyd. Comparable activity was observed for these two agents against the NCI-H23 and OVCAR3 xenografts.

View Article and Find Full Text PDF

Ras/Raf/MEK/ERK (MAPK) and PI3K/AKT signaling pathways influence several cell functions involved in oncogenesis, making them attractive drug targets. We describe a novel multiplex immunoassay to quantitate isoform-specific phosphorylation of proteins in the PI3K/AKT and MAPK pathways as a tool to assess pharmacodynamic changes. Isoform-specific assays measuring total protein and site-specific phosphorylation levels of ERK1/2, MEK1/2, AKT1/2/3, and rpS6 were developed on the Luminex platform with validated antibody reagents.

View Article and Find Full Text PDF

Mouse kidney parvovirus (MKPV), also known as murine chapparvovirus (MuCPV), is an emerging, highly infectious agent that has been isolated from laboratory and wild mouse populations. In immunocompromised mice, MKPV produces severe chronic interstitial nephropathy and renal failure within 4 to 5 months of infection. However, the course of disease, severity of histologic lesions, and viral shedding are uncertain for immunocompetent mice.

View Article and Find Full Text PDF

Background: Spontaneously metastatic xenograft models of cancer are infrequent and the few that exist are resource intensive. In xenografts, caliper measurements can be used to determine primary tumor burden and response to therapy but in metastatic disease models determination of the presence of metastatic disease, metastatic burden, and response to therapy are difficult, often requiring serial necropsy. In this study we characterized the development of visceral metastases in a patient derived xenograft model (PDXM) using in vivo imaging.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNST) frequently overexpress eukaryotic initiation factor 4F components, and the eIF4A inhibitor silvestrol potently suppresses MPNST growth. However, silvestrol has suboptimal drug-like properties, including a bulky structure, poor oral bioavailability (<2%), sensitivity to MDR1 efflux, and pulmonary toxicity in dogs. We compared ten silvestrol-related rocaglates lacking the dioxanyl ring and found that didesmethylrocaglamide (DDR) and rocaglamide (Roc) had growth-inhibitory activity comparable with silvestrol.

View Article and Find Full Text PDF

The significance of the phenotypic plasticity afforded by epithelial-mesenchymal transition (EMT) for cancer progression and drug resistance remains to be fully elucidated in the clinic. We evaluated epithelial-mesenchymal phenotypic characteristics across a range of tumor histologies using a validated, high-resolution digital microscopic immunofluorescence assay (IFA) that incorporates β-catenin detection and cellular morphology to delineate carcinoma cells from stromal fibroblasts and that quantitates the individual and colocalized expression of the epithelial marker E-cadherin (E) and the mesenchymal marker vimentin (V) at subcellular resolution ("EMT-IFA"). We report the discovery of β-catenin cancer cells that coexpress E-cadherin and vimentin in core-needle biopsies from patients with various advanced metastatic carcinomas, wherein these cells are transitioning between strongly epithelial and strongly mesenchymal-like phenotypes.

View Article and Find Full Text PDF

The preclinical antitumor agent RITA (2,5-bis[5-hydroxymethyl-2-thienyl] furan, NSC 652287), an analog of the natural product α-terthiophene, failed during the development phase due to acute pulmonary toxicity in animal models. A series of synthetic modifications to RITA's heterocyclic scaffold resulted in activity ranging from broadly cytotoxic to highly selective. In the NCI 60-cell line screen, these "hyperselective" agents (e.

View Article and Find Full Text PDF

Purpose: We sought to examine the pharmacodynamic activation of the DNA damage response (DDR) pathway in tumors following anticancer treatment for confirmation of target engagement.

Experimental Design: We evaluated the time course and spatial activation of 3 protein biomarkers of DNA damage recognition and repair (γH2AX, pS343-Nbs1, and Rad51) simultaneously in a quantitative multiplex immunofluorescence assay (IFA) to assess DDR pathway activation in tumor tissues following exposure to DNA-damaging agents.

Results: Because of inherent biological variability, baseline DDR biomarker levels were evaluated in a colorectal cancer microarray to establish clinically relevant thresholds for pharmacodynamic activation.

View Article and Find Full Text PDF

The presence of cancer stem cells (CSCs) and the induction of epithelial-to-mesenchymal transition (EMT) in tumors are associated with tumor aggressiveness, metastasis, drug resistance, and poor prognosis, necessitating the development of reagents for unambiguous detection of CSC- and EMT-associated proteins in tumor specimens. To this end, we generated novel antibodies to EMT- and CSC-associated proteins, including Goosecoid, Sox9, Slug, Snail, and CD133. Importantly, unlike several widely used antibodies to CD133, the anti-CD133 antibodies we generated recognize epitopes distal to known glycosylation sites, enabling analyses that are not confounded by differences in CD133 glycosylation.

View Article and Find Full Text PDF

The development of molecularly targeted agents has benefited from use of pharmacodynamic markers to identify "biologically effective doses" (BED) below MTDs, yet this knowledge remains underutilized in selecting dosage regimens and in comparing the effectiveness of targeted agents within a class. We sought to establish preclinical proof-of-concept for such pharmacodynamics-based BED regimens and effectiveness comparisons using MET kinase small-molecule inhibitors. Utilizing pharmacodynamic biomarker measurements of MET signaling (tumor pYMET/total MET ratio) in a phase 0-like preclinical setting, we developed optimal dosage regimens for several MET kinase inhibitors and compared their antitumor efficacy in a -amplified gastric cancer xenograft model (SNU-5).

View Article and Find Full Text PDF

MET tyrosine kinase (TK) dysregulation is significantly implicated in many types of cancer. Despite over 20 years of drug development to target MET in cancers, a pure anti-MET therapeutic has not yet received market approval. The failure of two recently concluded phase III trials point to a major weakness in biomarker strategies to identify patients who will benefit most from MET therapies.

View Article and Find Full Text PDF

Purpose: Rational development of targeted MET inhibitors for cancer treatment requires a quantitative understanding of target pharmacodynamics, including molecular target engagement, mechanism of action, and duration of effect.

Experimental Design: Sandwich immunoassays and specimen handling procedures were developed and validated for quantifying full-length MET and its key phosphospecies (pMET) in core tumor biopsies. MET was captured using an antibody to the extracellular domain and then probed using antibodies to its C-terminus (full-length) and epitopes containing pY1234/1235, pY1235, and pY1356.

View Article and Find Full Text PDF

Purpose: To support clinical pharmacodynamic evaluation of the Smac mimetic TL32711 (birinapant) and other apoptosis-targeting drugs, we describe the development, validation, and application of novel immunoassays for 15 cytosolic and membrane-associated proteins indicative of the induction, onset, and commitment to apoptosis in human tumors.

Experimental Design: The multiplex immunoassays were constructed on the Luminex platform with apoptosis biomarkers grouped into three panels. Panel 1 contains Bak, Bax, total caspase-3, total lamin-B (intact and 45 kDa fragment), and Smac; panel 2 contains Bad, Bax-Bcl-2 heterodimer, Bcl-xL, Bim, and Mcl1; and panel 3 contains active (cleaved) caspase-3, Bcl-xL-Bak heterodimer, Mcl1-Bak heterodimer, pS99-Bad, and survivin.

View Article and Find Full Text PDF

Background: Development of cancer therapeutics partially depends upon selection of appropriate animal models. Therefore, improvements to model selection are beneficial.

Results: Forty-nine human tumor xenografts at in vivo passages 1, 4 and 10 were subjected to cDNA microarray analysis yielding a dataset of 823 Affymetrix HG-U133 Plus 2.

View Article and Find Full Text PDF

Oxyphenisatin (3,3-bis(4-hydroxyphenyl)-1H-indol-2-one) and several structurally related molecules have been shown to have in vitro and in vivo antiproliferative activity. This study aims to confirm and extend mechanistic studies by focusing on oxyphenisatin acetate (OXY, NSC 59687), the pro-drug of oxyphenisatin. Results confirm that OXY inhibits the growth of the breast cancer cell lines MCF7, T47D, HS578T, and MDA-MB-468.

View Article and Find Full Text PDF

Background: Cancer stem cells (CSC) are thought to be responsible for tumor maintenance and heterogeneity. Bona fide CSC purified from tumor biopsies are limited in supply and this hampers study of CSC biology. Furthermore, purified stem-like CSC subpopulations from existing tumor lines are unstable in culture.

View Article and Find Full Text PDF

Global metabolomics analysis has the potential to uncover novel metabolic pathways that are differentially regulated during carcinogenesis, aiding in biomarker discovery for early diagnosis and remission monitoring. Metabolomics studies with human samples can be problematic due to high inter-individual variation; however xenografts of human cancers in mice offer a well-controlled model system. Urine was collected from a xenograft mouse model of MCF-7 breast cancer and analyzed by mass spectrometry-based metabolomics to identify metabolites associated with cancer progression.

View Article and Find Full Text PDF

Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is diagnosed in approximately 15% of all human breast cancer (BrCa) patients. Currently, no targeted therapies exist for this subtype of BrCa and prognosis remains poor. Our laboratory has previously identified a proliferation/DNA repair/cell cycle gene signature (Tag signature) that is characteristic of human TNBC.

View Article and Find Full Text PDF