Publications by authors named "Melinda D Smith"

Article Synopsis
  • Drought events are becoming more common in grasslands and shrublands, affecting soil organic carbon (SOC), which includes different forms like particulate (POC) and mineral-associated organic carbon (MAOC).
  • A global study over 19 sites revealed that in wetter areas (aridity index > 0.65), extreme drought led to a significant decrease in SOC (7.9%) and POC (15.9%), but MAOC levels remained unchanged.
  • In drier regions (aridity index < 0.65), drought did not significantly affect any type of soil organic carbon, indicating that the impact of drought on SOC is influenced by environmental aridity and rainfall variability.
View Article and Find Full Text PDF

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is making droughts (periods without rain) happen more often and for longer periods of time, which is bad for ecosystems.
  • Scientists did a big experiment in many places around the world to see how one year of drought affects grasslands and shrublands.
  • They found that extreme drought can reduce plant growth much more than expected, especially in dry areas with fewer types of plants, showing that these places are more at risk.
View Article and Find Full Text PDF

Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought.

View Article and Find Full Text PDF

Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process-based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests.

View Article and Find Full Text PDF

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data.

View Article and Find Full Text PDF

Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment.

View Article and Find Full Text PDF

Ecosystems are faced with an onslaught of co-occurring global change drivers. While frequently studied independently, the effects of multiple global change drivers have the potential to be additive, antagonistic, or synergistic. Global warming, for example, may intensify the effects of more variable precipitation regimes with warmer temperatures increasing evapotranspiration and thereby amplifying the effect of already dry soils.

View Article and Find Full Text PDF

The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison () in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle ().

View Article and Find Full Text PDF

We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs.

View Article and Find Full Text PDF

Increased nitrogen (N) deposition is known to reduce the ecosystem stability, while the underlying mechanisms are still controversial. We conducted an 8-year multi-level N addition experiment in a temperate semi-arid grassland to identify the mechanisms (biodiversity, species asynchrony, population stability and dominant species stability) driving the N-induced loss of temporal stability of aboveground net primary productivity (ANPP). We found that N addition decreased ecosystem, population, and dominant species stability; decreased species richness and phylogenetic diversity; increased species dominance; but had nonsignificant effects on community-wide species asynchrony.

View Article and Find Full Text PDF

Drought is intensifying globally with climate change, creating an urgency to understand ecosystem response to drought both during and after these events end to limit loss of ecosystem functioning. The literature is replete with studies of how ecosystems respond during drought, yet there are far fewer studies focused on ecosystem dynamics after drought ends. Furthermore, while the terms used to describe drought can be variable and inconsistent, so can those that describe ecosystem responses following drought.

View Article and Find Full Text PDF

Plant nonstructural carbohydrates (NSC) can reflect community and ecosystem responses to environmental changes such as water availability. Climate change is predicted to increase aridity and the frequency of extreme drought events in grasslands, but it is unclear how community-scale NSC will respond to drought or how such responses may vary along aridity gradients. We experimentally imposed a 4-year drought in six grasslands along a natural aridity gradient and measured the community-weighted mean of leaf soluble sugar (SS) and total leaf NSC (NSC) concentrations.

View Article and Find Full Text PDF

Climate change is predicted to increase the frequency and intensity of extreme events including droughts and large precipitation events or "deluges." While many studies have focused on the ecological impacts of individual events (e.g.

View Article and Find Full Text PDF

Climate variability and periodic droughts have complex effects on carbon (C) fluxes, with uncertain implications for ecosystem C balance under a changing climate. Responses to climate change can be modulated by persistent effects of climate history on plant communities, soil microbial activity, and nutrient cycling (i.e.

View Article and Find Full Text PDF

Plants are subject to trade-offs among growth strategies such that adaptations for optimal growth in one condition can preclude optimal growth in another. Thus, we predicted that a plant species that responds positively to one global change treatment would be less likely than average to respond positively to another treatment, particularly for pairs of treatments that favor distinct traits. We examined plant species' abundances in 39 global change experiments manipulating two or more of the following: CO , nitrogen, phosphorus, water, temperature, or disturbance.

View Article and Find Full Text PDF

Extreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability.

View Article and Find Full Text PDF

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted.

View Article and Find Full Text PDF

Species dominance and biodiversity in plant communities have received considerable attention and characterisation. However, species codominance, while often alleged, is seldom defined or quantified. Codominance is a common phenomenon and is likely to be an important driver of community structure, ecosystem function and the stability of both.

View Article and Find Full Text PDF

Process-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass-dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C grasses and (sub)tropical C grasses.

View Article and Find Full Text PDF
Article Synopsis
  • Drought happens when there isn’t enough rain, and it can last for a short time or many years.
  • In a study of grasslands in the Great Plains, scientists tested two types of drought: one that had less rain during every rainfall (chronic drought) and one that had no rain for a shorter period (intense drought).
  • They found that intense drought usually caused more damage to the grasslands than chronic drought, especially to the grass and plant roots, although both types of drought reduced the grasslands' ability to grow.
View Article and Find Full Text PDF

In terrestrial ecosystems, climate change forecasts of increased frequencies and magnitudes of wet and dry precipitation anomalies are expected to shift precipitation-net primary productivity (PPT-NPP) relationships from linear to nonlinear. Less understood, however, is how future changes in the duration of PPT anomalies will alter PPT-NPP relationships. A review of the literature shows strong potential for the duration of wet and dry PPT anomalies to impact NPP and to interact with the magnitude of anomalies.

View Article and Find Full Text PDF

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation.

View Article and Find Full Text PDF

During the 1930s Dust Bowl drought in the central United States, species with the C photosynthetic pathway expanded throughout C-dominated grasslands. This widespread increase in C grasses during a decade of low rainfall and high temperatures is inconsistent with well-known traits of C vs. C pathways.

View Article and Find Full Text PDF