Publications by authors named "Melinda D Hains"

Because phospholipase C epsilon (PLC-epsilon) is activated by Galpha(12/13) and Rho family GTPases, we investigated whether these G proteins contribute to the increased inositol lipid hydrolysis observed in COS-7 cells after activation of certain G protein-coupled receptors. Stimulation of inositol lipid hydrolysis by endogenous lysophosphatidic acid (LPA) or thrombin receptors was markedly enhanced by the expression of PLC-epsilon. Expression of the LPA(1) or PAR1 receptor increased inositol phosphate production in response to LPA or SFLLRN, respectively, and these agonist-stimulated responses were markedly enhanced by coexpression of PLC-epsilon.

View Article and Find Full Text PDF

We have previously shown that the PDGFbeta receptor uses a classical GPCR-mediated pathway in order to induce efficient activation of p42/p44 MAPK in response to PDGF. We therefore, considered the possibility that GTPase accelerating proteins (RGS proteins), which regulate GPCR signalling, modulate PDGFbeta receptor-mediated signal transmission. Several lines of evidence were obtained to support functional interaction between the PDGFbeta receptor and RGS12 in HEK 293 and airway smooth muscle cells.

View Article and Find Full Text PDF

Regulators of G-protein Signaling (RGS proteins) are a multigene family of GTPase-accelerating proteins for the Galpha subunit of heterotrimeric G-proteins. The mammalian R12 RGS protein subfamily is composed of RGS12 and RGS14, two proteins characterized by their multidomain architecture of hallmark RGS domain, tandem Ras-binding domains (RBDs), and a second Galpha interacting domain, the GoLoco motif. The Rgs12 gene generates multiple splice variants, the largest of which encodes N-terminal PDZ and PTB domains in addition to the core RGS/RBD/GoLoco motifs.

View Article and Find Full Text PDF

GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described.

View Article and Find Full Text PDF

Activation of GABAB receptors in chick dorsal root ganglion (DRG) neurons inhibits the Cav2.2 calcium channel in both a voltage-dependent and voltage-independent manner. The voltage-independent inhibition requires activation of a tyrosine kinase that phosphorylates the alpha1 subunit of the channel and thereby recruits RGS12, a member of the "regulator of G protein signaling" (RGS) proteins.

View Article and Find Full Text PDF

Regulator of G-protein signaling (RGS) domains bind directly to GTP-bound Galpha subunits and accelerate their intrinsic GTPase activity by up to several thousandfold. The selectivity of RGS proteins for individual Galpha subunits has been illustrated. Thus, the expression of RGS proteins can be used to inhibit signaling pathways activated by specific G protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

GoLoco ('Galpha(i/o)-Loco' interaction) motif proteins have recently been identified as novel GDIs (guanine nucleotide dissociation inhibitors) for heterotrimeric G-protein alpha subunits. G18 is a member of the mammalian GoLoco-motif gene family and was uncovered by analyses of human and mouse genomes for anonymous open-reading frames. The encoded G18 polypeptide is predicted to contain three 19-amino-acid GoLoco motifs, which have been shown in other proteins to bind Galpha subunits and inhibit spontaneous nucleotide release.

View Article and Find Full Text PDF