Publications by authors named "Melinda Arnett"

The intercalated cells (ITCs) of the amygdala have been shown to be critical regulatory components of amygdalar circuits, which control appropriate fear responses. Despite this, the molecular processes guiding ITC development remain poorly understood. Here we establish the zinc finger transcription factor Tshz1 as a marker of ITCs during their migration from the dorsal lateral ganglionic eminence through maturity.

View Article and Find Full Text PDF

The normal function of the hypothalamic-pituitary-adrenal (HPA) axis, and resultant glucocorticoid (GC) secretion, is essential for human health. Disruption of GC regulation is associated with pathologic, psychological, and physiological disease states such as depression, post-traumatic stress disorder, hypertension, diabetes, and osteopenia, among others. As such, understanding the mechanisms by which HPA output is tightly regulated in its responses to environmental stressors and circadian cues has been an active area of investigation for decades.

View Article and Find Full Text PDF

Glucocorticoid receptors (GR) in the paraventricular nucleus of the hypothalamus (PVN) are important regulators of negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Previous evaluation of endogenous PVN GR function in adult mice demonstrated that mice with loss of GR exon 3 in the PVN (Sim1Cre-GRe3Δ) have a hyperactive HPA axis, growth impairment and metabolic disruptions. Here, we hypothesized that lack of negative feedback inhibition of the HPA axis through PVN GR, as demonstrated through loss of PVN GR early in life, will have developmental-stage-specific consequences.

View Article and Find Full Text PDF

Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) and corticotropin-releasing hormone (CRH) are important molecular regulators of an individual's ability to respond to stressful stimuli in an adaptive manner. Impaired signaling of both GR and CRH often leads to dysfunction of the hypothalamic-pituitary-adrenal axis, which underlies the etiology of many affective disorders such as anxiety and depression. Studies focusing on how GR and CRH influence the stress response are limited as they generalize to broad brain regions, thus hindering identification of how specific CNS nuclei contribute to maladaptive stress responses.

View Article and Find Full Text PDF

To maintain well-being, all organisms require the ability to re-establish homeostasis in the presence of adverse physiological or psychological experiences. The regulation of the hypothalamic-pituitary adrenal (HPA) axis during stress is important in preventing maladaptive responses that may increase susceptibility to affective disorders. Corticotropin-releasing hormone (CRH) is a central stress hormone in the HPA axis pathway and has been implicated in stress-induced psychiatric disorders, reproductive and cardiac function, as well as energy metabolism.

View Article and Find Full Text PDF

Genetic modulation of glucocorticoid receptor (GR) function in the brain using transgenic and gene knockout mice has yielded important insights into many aspects of GR effects on behavior and neuroendocrine responses, but significant limitations regarding interpretation of region-specific and temporal requirements remain. Here, we summarize the behavioral phenotype associated with two knockout mouse models to define the role of GRs specifically within the forebrain and amygdala. We report that forebrain-specific GR knockout mice exhibit impaired negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased despair- and anxiety-like behaviors.

View Article and Find Full Text PDF

The nerve growth factor precursor (pro-NGF) may function as a death-inducing ligand that mediates its apoptotic effects via p75NTR. Pro-NGF-induced apoptosis is postulated to be dependent upon membrane expression of the sortilin receptor, which interacts with p75NTR to promote a high-affinity binding site for pro-NGF. Here, we explore the expression of pro-NGF, sortilin and p75NTR in the mouse lumbar dorsal root ganglion (DRG) to understand the potential for this trimeric signaling complex to function in injury-induced neuronal death of DRG neurons.

View Article and Find Full Text PDF

Advances in science have increased the knowledge of how cells die in the body (apoptosis). A basic understanding of this process can improve nurses' ability to review new scientific literature and enable them to provide safer bedside care.

View Article and Find Full Text PDF