Publications by authors named "Melina Schwier"

Plants exude secondary metabolites from the roots to shape the composition and function of their microbiome. Many of these compounds are known for their anti-microbial activities and play a role in plant immunity, such as the indole-derived phytoalexin camalexin. Here we studied the dynamics of camalexin synthesis and exudation upon interaction of Arabidopsis thaliana with the plant growth promoting bacteria Pseudomonas sp.

View Article and Find Full Text PDF

Heterotrimeric G-proteins are signal transduction complexes that comprised three subunits, Gα, Gβ, and Gγ, and are involved in many aspects of plant life. The noncanonical Gα subunit EXTRA LARGE G-PROTEIN2 (XLG2) mediates pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species (ROS) generation and immunity downstream of pattern recognition receptors. A mutant of the chitin receptor component CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), cerk1-4, maintains normal chitin signaling capacity but shows excessive cell death upon infection with powdery mildew fungi.

View Article and Find Full Text PDF

The last decade brought great progress in describing the repertoire of microbes associated with plants and identifying principles of their interactions. Metabolites exuded by plant roots have been considered candidates for the mechanisms by which plants shape their root microbiome. Here, we review the evidence for several plant metabolites affecting plant interaction with microbes belowground.

View Article and Find Full Text PDF

Fungal pathogens require the unfolded protein response (UPR) to maintain protein homeostasis of the endoplasmic reticulum (ER) during pathogenic development. In the corn smut fungus , pathogenic development is controlled by the and mating-type loci. The UPR is specifically activated after plant penetration and required for efficient secretion of effectors and suppression of the plant defense response.

View Article and Find Full Text PDF