Introduction/aims: Persons with spinal muscular atrophy (pwSMA) report progressive muscle weakness but also reduced endurance when performing repetitive tasks in daily life, referred to as "performance fatigability" (PF). Data regarding the effects of the new disease-modifying drugs on PF are scarce. Thus, our main objective was to examine PF in adult ambulatory pwSMA treated long-term with nusinersen.
View Article and Find Full Text PDFAn altered gut microbiota is a possible contributing pathogenic factor in myasthenia gravis (MG), an autoimmune neuromuscular disease. However, the significance of the fungal microbiome is an understudied and neglected part of the intestinal microbiome in MG. We performed a sub-analysis of the MYBIOM study including faecal samples from patients with MG ( = 41), non-inflammatory neurological disorder (NIND, = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, = 6) and healthy volunteers (n = 12) by sequencing the internal transcribed spacer 2 (ITS2).
View Article and Find Full Text PDFBackground: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint).
View Article and Find Full Text PDFNusinersen is the first approved drug for the treatment of spinal muscular atrophy (SMA). Treatment of SMA with nusinersen is based on a fixed dosing regimen. For other motoneuron diseases, such as amyotrophic lateral sclerosis (ALS), biomarkers are available for clinical diagnostics; however, no such biomarkers have yet been found for SMA.
View Article and Find Full Text PDF