Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner.
View Article and Find Full Text PDFThe optimal ratio of the polycation's amine to DNA phosphate group (N:P) for efficient polymer-based transfection always employs excess polycation versus DNA. Most of the excess polycation remains free in solution, unassociated with the polyplexes, but is essential for efficient transfection. The mechanism by which excess polycation increases transfection efficiency is not identified.
View Article and Find Full Text PDF