Publications by authors named "Melika Farzam"

Hypothesis: Contact angle and sliding angle measurements are widely used to characterize superhydrophobic surfaces because of the simplicity and accessibility of the technique. We hypothesize that dynamic friction measurements, with increasing pre-loads, between a water drop and a superhydrophobic surface is more accurate because this technique is less influenced by local surface inhomogeneities and temporal surface changes.

Experiments: A water drop, held by a ring probe which is connected to a dual-axis force sensor, is sheared against a superhydrophobic surface while maintaining a constant preload.

View Article and Find Full Text PDF

Low-density polyethylene (LDPE) films are widely used in packaging, insulation and many other commodity applications due to their excellent mechanical and chemical properties. However, the water-wetting and water-repellant properties of these films are insufficient for certain applications. In this study, bare LDPE and textured LDPE (T-LDPE) films were subjected to low-pressure plasmas, such as carbon tetrafluoride (CF) and hydrogen (H), to see the effect of plasma treatment on the wetting properties of LDPE films.

View Article and Find Full Text PDF

Nature has proven to be a valuable resource in inspiring the development of novel technologies. The field of biomimetics emerged centuries ago as scientists sought to understand the fundamental science behind the extraordinary properties of organisms in nature and applied the new science to mimic a desired property using various materials. Through evolution, living organisms have developed specialized surface coatings and chemistries with extraordinary properties such as the superhydrophobicity, which has been exploited to maintain structural integrity and for survival in harsh environments.

View Article and Find Full Text PDF

Superhydrophobic surfaces have attracted considerable attention because of their unique water-repellency and their wide range of applications. The conventional method to characterize the surface wetting properties of surfaces, including superhydrophobic surfaces, relies on measuring static and dynamic contact angles, and sliding angles of water drops. However, because of the inhomogeneities inherently present on surfaces (smooth and textured), such optical methods can result in relatively large variability in sliding angle measurements.

View Article and Find Full Text PDF