Publications by authors named "Melih Yilmaz"

Protein tandem mass spectrometry data are most often interpreted by matching observed mass spectra to a protein database derived from the reference genome of the sample being analyzed. In many application domains, however, a relevant protein database is unavailable or incomplete, and in such settings de novo sequencing is required. Since the introduction of the DeepNovo algorithm in 2017, the field of de novo sequencing has been dominated by deep learning methods, which use large amounts of labeled mass spectrometry data to train multi-layer neural networks to translate from observed mass spectra to corresponding peptide sequences.

View Article and Find Full Text PDF

A key parameter of any bottom-up proteomics mass spectrometry experiment is the identity of the enzyme that is used to digest proteins in the sample into peptides. The Casanovo de novo sequencing model was trained using data that was generated with trypsin digestion; consequently, the model prefers to predict peptides that end with the amino acids "K" or "R". This bias is desirable when Casanovo is used to analyze data that was also generated using trypsin but can be problematic if the data was generated using some other digestion enzyme.

View Article and Find Full Text PDF

A fundamental challenge in mass spectrometry-based proteomics is the identification of the peptide that generated each acquired tandem mass spectrum. Approaches that leverage known peptide sequence databases cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to tandem mass spectra without prior information-de novo peptide sequencing-is valuable for tasks including antibody sequencing, immunopeptidomics, and metaproteomics.

View Article and Find Full Text PDF

Motivation: One of the core problems in the analysis of protein tandem mass spectrometry data is the peptide assignment problem: determining, for each observed spectrum, the peptide sequence that was responsible for generating the spectrum. Two primary classes of methods are used to solve this problem: database search and de novo peptide sequencing. State-of-the-art methods for de novo sequencing use machine learning methods, whereas most database search engines use hand-designed score functions to evaluate the quality of a match between an observed spectrum and a candidate peptide from the database.

View Article and Find Full Text PDF

This study aimed to determine how melatonin (MT) and seminal plasma affected the freezability of buck sperm during the nonbreeding season. Semen was collected from eight bucks before (pre-MT) and after (post-MT) MT application in the nonbreeding season. Individual ejaculates were collected from the bucks, split into two equal groups according to the removal of seminal plasma (SP) (-) or nonremoval of SP (+).

View Article and Find Full Text PDF

Background: High-value cancer care balances effective treatment with preservation of quality of life. Chemotherapy is known to affect patients' physical and psychological well-being negatively. Patient-reported outcomes (PROs) provide a means to monitor declines in a patients' well-being during treatment.

View Article and Find Full Text PDF