Background: In this work, a small-scale ceramic microbial fuel cell (MFC) with a novel type of metal-carbon-derived electrocatalyst containing iron and nicarbazin (Fe-NCB) was developed, to enhance electricity generation from neat human urine. Substrate oxidation at the anode provides energy for the separation of ions and recovery from urine without any chemical or external power additions.
Results: The catalyst was shown to be effective in clear electrolyte synthesis of high pH, compared with a range of carbon-based metal-free materials.
A new algorithm is proposed to estimate the tool-tissue force interaction in robot-assisted minimally invasive surgery which does not require the use of external force sensing. The proposed method utilizes the current of the motors of the surgical instrument and neural network methods to estimate the force interaction. Offline and online testing is conducted to assess the feasibility of the developed algorithm.
View Article and Find Full Text PDFThis paper presents the development of a wearable Fingertip Haptic Device (FHD) that can provide cutaneous feedback via a Variable Compliance Platform (VCP). The FHD includes an inertial measurement unit, which tracks the motion of the user's finger while its haptic functionality relies on two parameters: pressure in the VCP and its linear displacement towards the fingertip. The combination of these two features results in various conditions of the FHD, which emulate the remote object or surface stiffness properties.
View Article and Find Full Text PDFPower output limitation is one of the main challenges that needs to be addressed for full-scale applications of the Microbial Fuel Cell (MFC) technology. Previous studies have examined electrochemical performance of different cathode electrodes including the development of novel iron based electrocatalysts, however the long-term investigation into continuously operating systems is rare. This work aims to study the application of platinum group metals-free (PGM-free) catalysts integrated into an air-breathing cathode of the microbial fuel cell operating on activated sewage sludge and supplemented with acetate as the carbon energy source.
View Article and Find Full Text PDFMotile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates.
View Article and Find Full Text PDFThis study presents a simple and sustainable Microbial Fuel Cell as a standalone, self-powered reactor for in situ wastewater electrolysis, recovering nitrogen from wastewater. A process is proposed whereby the MFC electrical performance drives the electrolysis of wastewater towards the self-generation of catholyte within the same reactor. The MFCs were designed to harvest the generated catholyte in the internal chamber, which showed that liquid production rates are largely proportional to electrical current generation.
View Article and Find Full Text PDFThis work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent.
View Article and Find Full Text PDFBioinspir Biomim
December 2015
The first self-sufficient system, powered by a wearable energy generator based on microbial fuel cell (MFC) technology is introduced. MFCs made from compliant material were developed in the frame of a pair of socks, which was fed by urine via a manual gaiting pump. The simple and single loop cardiovascular fish circulatory system was used as the inspiration for the design of the manual pump.
View Article and Find Full Text PDFIn Microbial Fuel Cells (MFCs), the recovery of water can be achieved with the help of both active (electro-osmosis), and passive (osmosis) transport pathways of electrolyte through the semi-permeable selective separator. The electrical current-dependent transport, results in cations and electro-osmotically dragged water molecules reaching the cathode. The present study reports on the production of catholyte on the surface of the cathode, which was achieved as a direct result of electricity generation using MFCs fed with wastewater, and employing Pt-free carbon based cathode electrodes.
View Article and Find Full Text PDFTo date, the development of microbially assisted synthesis in Bioelectrochemical Systems (BESs) has focused on mechanisms that consume energy in order to drive the electrosynthesis process. This work reports--for the first time--on novel ceramic MFC systems that generate electricity whilst simultaneously driving the electrosynthesis of useful chemical products. A novel, inexpensive and low maintenance MFC demonstrated electrical power production and implementation into a practical application.
View Article and Find Full Text PDFEffective tactile sensing for artificial platforms remains an open issue in robotics. This study investigates the performance of a soft biologically-inspired artificial fingertip in active exploration tasks. The fingertip sensor replicates the mechanisms within human skin and offers a robust solution that can be used both for tactile sensing and gripping/manipulating objects.
View Article and Find Full Text PDFBackground: Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods, such as robot-assisted minimally invasive surgery (MIS). This study aimed to investigate and discuss the needs of MIS in terms of instrumentation and to inform the design of a novel instrument.
Methods: A survey was conducted among surgeons regarding their opinions on surgical training, surgical systems, how satisfied they were with them and how easy they were to use.
This communication reports for the first time the charging of a commercially available mobile phone, using Microbial Fuel Cells (MFCs) fed with real neat urine. The membrane-less MFCs were made out of ceramic material and employed plain carbon based electrodes.
View Article and Find Full Text PDFThe development of the microbial fuel cell (MFC) technology has seen an enormous growth over the last hundred years since its inception by Potter in 1911. The technology has reached a level of maturity that it is now considered to be a field in its own right with a growing scientific community. The highest level of activity has been recorded over the last decade and it is perhaps considered commonplace that MFCs are primarily suitable for stationary, passive wastewater treatment applications.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
July 2012
This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion.
View Article and Find Full Text PDFThis paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2012
This communication reports for the first time the direct utilisation of urine in MFCs for the production of electricity. Different conversion efficiencies were recorded, depending on the amount treated. Elements such as N, P, K can be locked into new biomass, thus removed from solution, resulting in recycling without environmental pollution.
View Article and Find Full Text PDFThis study reports on the findings from the investigation into small-scale (6.25 mL) MFCs, connected together as a network of multiple units. The MFCs contained unmodified (no catalyst) carbon fibre electrodes and for initial and later experiments, a standard ion-exchange membrane for the proton transfer from the anode to the cathode.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
December 2009
In this paper, a model of cerebellar function is implemented and evaluated in the control of a robot eye actuated by pneumatic artificial muscles. The investigated control problem is stabilization of the visual image in response to disturbances. This is analogous to the vestibuloocular reflex (VOR) in humans.
View Article and Find Full Text PDFBioinspir Biomim
September 2008
The vestibulo-ocular reflex stabilizes vision in many vertebrates. It integrates inertial and visual information to drive the eyes in the opposite direction to head movement and thereby stabilizes the image on the retina. Its adaptive nature guarantees stable vision even when the biological system undergoes dynamic changes (due to disease, growth or fatigue etc), a characteristic especially desirable in autonomous robotic systems.
View Article and Find Full Text PDFThis paper describes an experiment to quantify texture using an artificial finger equipped with a microphone to detect frictional sound. Using a microphone to record tribological data is a biologically inspired approach that emulates the Pacinian corpuscle. Artificial surfaces were created to constrain the subsequent analysis to specific textures.
View Article and Find Full Text PDFIn this paper, we present two versions of a hardware processing architecture for modeling large networks of leaky-integrate-and-fire (LIF) neurons; the second version provides performance enhancing features relative to the first. Both versions of the architecture use fixed-point arithmetic and have been implemented using a single field-programmable gate array (FPGA). They have successfully simulated networks of over 1000 neurons configured using biologically plausible models of mammalian neural systems.
View Article and Find Full Text PDFThis paper reports on the first stage in developing microbial fuel cells (MFCs) which can operate underwater by utilizing dissolved oxygen. In this context, the cathodic half-cell is likened to an artificial gill. Such an underwater power generator has obvious potential for autonomous underwater robots.
View Article and Find Full Text PDFFor engineers the prospect of scalable collective robot systems is very appealing. Such systems typically adopt a decentralized approach in their control and coordination mechanism, which employs local sensing and action as well as limited communication. Under these constraints and informed by research on Temnothorax ants, two puck sorting algorithms were tested in a combination of simulation and with real robots.
View Article and Find Full Text PDF