Publications by authors named "Melbagrace Lapening"

Aims: The objective was to validate the initial beam parameters of the Davao Doctors Hospital's 6 MV Elekta Synergy Platform linac, which performs to the specification of the commissioning data per our records using the gamma-index analysis toolkit integrated inside PRIMO software.

Materials And Methods: In PRIMO, a sequence of optimization processes is performed, in which the measured and simulated percent depth dose (PDD) and lateral beam profiles at various depths are compared, using the stringent gamma-index passing rate at 1%/1 mm criteria (GPR11). Using four fields of sizes 3 cm × 3 cm, 4 cm × 4 cm, 5 cm × 5 cm, and 10 cm × 10 cm, the dose is calculated on a water phantom measuring 16.

View Article and Find Full Text PDF

Histamine is a well-known biogenic amine (BA) that is often associated with allergic reactions and is a significant cause of foodborne illnesses resulting from the consumption of spoiled food. Detecting histamine is essential for maintaining food safety standards and preserving the quality. In this work, we developed a simple, low-cost, and rapid colorimetric method for detecting histamine.

View Article and Find Full Text PDF

Histamine, a primary biogenic amine (BA) generated through the decarboxylation of amino acids, concentration increases in protein-rich foods during deterioration. Thus, its detection plays a crucial role in ensuring food safety and quality. This study introduces an innovative approach involving the direct integration of dopamine onto gold nanoparticles (DCt-AuNP), aiming at rapid histamine colorimetric detection.

View Article and Find Full Text PDF

Histamine is among the biogenic amines that are formed during the microbial decarboxylation of amino acids in various food products, posing a significant threat to both food safety and human health. Herein, we present a one-step synthesis of PEGylated gold nanoparticles (PEG-AuNPs) for rapid, simple, and cost-effective colorimetric histamine detection. PEG-AuNPs' surface plasmon resonance (SPR) range at 520-530 nm with a hydrodynamic size distribution of 20-40 nm.

View Article and Find Full Text PDF