Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage.
View Article and Find Full Text PDFDuring a T cell response, naive CD8 T cells differentiate into effector cells. Subsequently, a subset of effector cells termed memory precursor effector cells further differentiates into functionally mature memory CD8 T cells. The transcriptional network underlying this carefully scripted process is not well understood.
View Article and Find Full Text PDFCD8 T cells exhibit dynamic alterations in proliferation and apoptosis during various phases of the CD8 T-cell response, but the mechanisms that regulate cellular proliferation from the standpoint of CD8 T-cell memory are not well defined. The cyclin-dependent kinase inhibitor p27(Kip1) functions as a negative regulator of the cell cycle in T cells, and it has been implicated in regulating cellular processes, including differentiation, transcription and migration. Here, we investigated whether p27(Kip1) regulates CD8 T-cell memory by T-cell-intrinsic or T-cell-extrinsic mechanisms, by conditional ablation of p27(Kip1) in T cells or non-T cells.
View Article and Find Full Text PDFMuch is known about the differentiation of naive T cells into distinct lineages of effector cells, but the molecular mechanisms underlying the generation and maintenance of CD4 T cell memory are poorly characterized. Our studies ascribe a novel role for the cell cycle regulator p27(Kip1) as a prominent negative regulator of the establishment and long-term maintenance of Th1 CD4 T cell memory. We demonstrate that p27(Kip1) might restrict the differentiation and survival of memory precursors by increasing the T-bet/Bcl-6 ratio in effector CD4 T cells.
View Article and Find Full Text PDFDuring a T cell response, the effector CTL pool contains two cellular subsets: short-lived effector cells (SLECs), a majority of which are destined for apoptosis, and the memory precursor effector cells, which differentiate into memory cells. Understanding the mechanisms that govern the differentiation of memory CD8 T cells is of fundamental importance in the development of effective CD8 T cell-based vaccines. The strength and nature of TCR signaling, along with signals delivered by cytokines like IL-2 and IL-12, influence differentiation of SLECs and memory precursor effector cells.
View Article and Find Full Text PDF