Chromosomal inversions can preserve combinations of favorable alleles by suppressing recombination. Simultaneously, they reduce the effectiveness of purifying selection enabling deleterious alleles to accumulate. This study explores how areas of low recombination, including centromeric regions and chromosomal inversions, contribute to the accumulation of deleterious and favorable loci in 225 Mangifera indica genomes from the Australian Mango Breeding Program.
View Article and Find Full Text PDFPlants adapt to their local environment through complex interactions between genes, gene networks and hormones. Although the impact of gene expression on trait regulation and evolution has been recognised for many decades, its role in the evolution of adaptation is still a subject of intense exploration. We used a Multi-parent Advanced Generation Inter-Cross (MAGIC) population, which we derived from crossing multiple parents from two distinct coastal ecotypes of an Australia wildflower, Senecio lautus.
View Article and Find Full Text PDFJ Public Health Manag Pract
September 2024
Background: On 20 September 2022, the Ugandan Ministry of Health declared an outbreak of Ebola disease caused by Sudan ebolavirus.
Methods: From 6 October 2022 to 10 January 2023, Centers for Disease Control and Prevention (CDC) staff conducted public health assessments at five US ports of entry for travellers identified as having been in Uganda in the past 21 days. CDC also recommended that state, local and territorial health departments ('health departments') conduct post-arrival monitoring of these travellers.
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.
View Article and Find Full Text PDFGenomic selection is a promising breeding technique for tree crops to accelerate the development of new cultivars. However, factors such as genetic structure can create spurious associations between genotype and phenotype due to the shared history between populations with different trait values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a fundamental requirement of genomic selection models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations.
View Article and Find Full Text PDFThe independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems.
View Article and Find Full Text PDFAdaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions.
View Article and Find Full Text PDFLocal adaptation can lead to genotype-by-environment interactions, which can create fitness tradeoffs in alternative environments, and govern the distribution of biodiversity across geographic landscapes. Exploring the ecological circumstances that promote the evolution of fitness tradeoffs requires identifying how natural selection operates and during which ontogenetic stages natural selection is strongest. When organisms disperse to areas outside their natural range, tradeoffs might emerge when organisms struggle to reach key life history stages, or alternatively, die shortly after reaching life history stages if there are greater risks of mortality associated with costs to developing in novel environments.
View Article and Find Full Text PDFAdaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation.
View Article and Find Full Text PDFAdaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia.
View Article and Find Full Text PDF