Publications by authors named "Melanie Welden"

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of protein A (PA) on every coat protein (CP) subunit (TVCV) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCV and the wild-type subgroup 3 tobamovirus.

View Article and Find Full Text PDF

This work presents a new approach for the development of field-effect biosensors based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked bilayer of weak polyelectrolyte and tobacco mosaic virus (TMV) particles as enzyme nanocarriers. With the aim to increase the surface density of virus particles and thus, to achieve a dense immobilization of enzymes, the negatively charged TMV particles were loaded onto the EISCAP surface modified with a positively charged poly(allylamine hydrochloride) (PAH) layer. The PAH/TMV bilayer was prepared on the TaO-gate surface by means of layer-by-layer technique.

View Article and Find Full Text PDF

Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO-TaO layer structure for the sequential detection of penicillin and urea.

View Article and Find Full Text PDF