Publications by authors named "Melanie Vetter"

Motile cilia protrude from cell surfaces and are necessary to create movement of cells and fluids in the body. At the molecular level, cilia contain several dynein molecular motor complexes including outer dynein arms (ODAs) that are attached periodically to the ciliary axoneme, where they hydrolyse ATP to create the force required for bending and motility of the cilium. ODAs are preassembled in the cytoplasm and subsequently trafficked into the cilium by the intraflagellar transport (IFT) system.

View Article and Find Full Text PDF

Background: Despite increased interest in combining learning and physical activity (PA), the academic and PA benefits of active learning are uncertain.

Methods: A systematic search of 5 databases for studies combining learning math with PA in primary/elementary schools was conducted. Academic benefit was evaluated by pre-post intervention math scores compared to a control group.

View Article and Find Full Text PDF

Serum starvation stimulates cilia growth in cultured cells, yet serum factors associated with ciliogenesis are unknown. Previously, we showed that starvation induces rapid Rab11-dependent vesicular trafficking of Rabin8, a Rab8 guanine-nucleotide exchange factor (GEF), to the mother centriole, leading to Rab8 activation and cilium growth. Here, we demonstrate that through the LPA receptor 1 (LPAR1), serum lysophosphatidic acid (LPA) inhibits Rab11a-Rabin8 interaction and ciliogenesis.

View Article and Find Full Text PDF

Background: Physically active learning that combines physical activity with core curriculum areas is emerging in school-based health interventions. This study investigates the effectiveness of learning an important numeracy skill of times tables (TT) while concurrently engaging in aerobic activity compared with a seated classroom approach.

Methods: Grade-4 primary school students were randomly allocated to physical activity (P) or classroom (C) groups and received the alternate condition in the following term.

View Article and Find Full Text PDF

Rab GTPases and their effectors, activators and guanine nucleotide exchange factors (GEFs) are essential for vesicular transport. Rab8 and its GEF Rabin8 function in formation of the cilium organelle important for developmental signaling and sensory reception. Here, we show by size exclusion chromatography and analytical ultracentrifugation that Rabin8 exists in equilibrium between dimers and tetramers.

View Article and Find Full Text PDF

Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT-B complex consists of 9-10 stably associated core subunits and six "peripheral" subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six "peripheral"IFT-B subunits of Chlamydomonas reinhardtiias recombinant proteins and show that they form a stable complex independently of the IFT-B core.

View Article and Find Full Text PDF

Mutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics.

View Article and Find Full Text PDF

Objectives: There is increasing evidence that physical activity (PA) positively affects cognitive function (CF). Existing research has focussed on this association in children and the elderly, with less research available in young to middle-aged adults who constitute a substantial proportion of the population.

Design: A systematic review investigating the relationship between habitual PA (≥12 months) and CF in young to middle-aged adults (18-50 years).

View Article and Find Full Text PDF

Small GTPases function as universal molecular switches due to the nucleotide dependent conformational changes of their switch regions that allow interacting proteins to discriminate between the active GTP-bound and the inactive GDP-bound states. Guanine nucleotide exchange factors (GEFs) recognize the inactive GDP-bound conformation whereas GTPase activating proteins (GAPs), and the GTPase effectors recognize the active GTP-bound state. Small GTPases are linked to each other through regulatory and effector proteins into functional networks that regulate intracellular membrane traffic through diverse mechanisms that include GEF and GAP cascades, GEF-effector interactions, common effectors and positive feedback loops linking interacting proteins.

View Article and Find Full Text PDF

The small GTPase Rab11 and its effectors FIP3 and Rabin8 are essential to membrane-trafficking pathways required for cytokinesis and ciliogenesis. Although effector binding is generally assumed to be sequential and mutually exclusive, we show that Rab11 can simultaneously bind FIP3 and Rabin8. We determined crystal structures of human Rab11-GMPPNP-Rabin8 and Rab11-GMPPNP-FIP3-Rabin8.

View Article and Find Full Text PDF

Acetylation of lysine residues is an important posttranslational modification found in all domains of life. α-Tubulin is specifically acetylated on lysine 40, a modification that serves to stabilize microtubules of axons and cilia. Whereas histone acetyltransferases have been extensively studied, there is no structural and mechanistic information available on α-tubulin acetyltransferases.

View Article and Find Full Text PDF

In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene.

View Article and Find Full Text PDF

Cilia and flagella are complex structures emanating from the surface of most eukaroytic cells and serve important functions including motility, signaling, and sensory reception. A process called intraflagellar transport (IFT) is of central importance to ciliary assembly and maintenance. The IFT complex is required for this transport and consists of two distinct multisubunit subcomplexes, IFT-A and IFT-B.

View Article and Find Full Text PDF

Transcription factor GATA4 is expressed in granulosa cells and, to a lesser extent, in other ovarian cell types. Studies of mutant mice have shown that interactions between GATA4 and its cofactor, ZFPM2 (also termed FOG2), are required for proper development of the fetal ovary. The role of GATA4 in postnatal ovarian function, however, has remained unclear, in part because of prenatal lethality of homozygous mutations in the Gata4 gene in mice.

View Article and Find Full Text PDF