BACKGROUNDThe complement system plays a key role in host defense but is activated by ischemia/reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared with systemic activation remains unclear.
View Article and Find Full Text PDFTacrolimus exhibits unpredictable pharmacokinetics (PKs) after lung transplant, partly explained by cytochrome P450 (CYP)-enzyme polymorphisms. However, whether exposure variability during the immediate postoperative period affects outcomes is unknown, and pharmacogenetic dosing may be limited by residual PK variability. We estimated adjusted associations between early postoperative tacrolimus concentrations and acute kidney injury (AKI) and acute cellular rejection (ACR), and identified clinical and pharmacogenetic factors that explain postoperative tacrolimus concentration variability in 484 lung transplant patients.
View Article and Find Full Text PDFBackground: Obesity is associated with an increased risk of primary graft dysfunction (PGD) after lung transplantation. The contribution of specific adipose tissue depots is unknown.
Methods: We performed a prospective cohort study of adult lung transplant recipients at 4 U.
Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.
View Article and Find Full Text PDFBackground: Donor smoking history and higher fraction of inspired oxygen (FIO2) at reperfusion are associated with primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidative injury biomarkers would be elevated in PGD, with higher levels associated with donor exposure to cigarette smoke and recipient hyperoxia at reperfusion.
Methods: We performed a nested case-control study of 72 lung transplant recipients from the Lung Transplant Outcomes Group cohort.
Rationale: Frailty is associated with morbidity and mortality in abdominal organ transplantation but has not been examined in lung transplantation.
Objectives: To examine the construct and predictive validity of frailty phenotypes in lung transplant candidates.
Methods: In a multicenter prospective cohort, we measured frailty with the Fried Frailty Phenotype (FFP) and Short Physical Performance Battery (SPPB).
Fever predicts clinical outcomes in sepsis, trauma and during cardiovascular stress, yet the genetic determinants are poorly understood. We used an integrative genomics approach to identify novel genomic determinants of the febrile response to experimental endotoxemia. We highlight multiple integrated lines of evidence establishing the clinical relevance of this novel fever locus.
View Article and Find Full Text PDFRationale: Acute respiratory distress syndrome (ARDS) behaves as a complex genetic trait, yet knowledge of genetic susceptibility factors remains incomplete.
Objectives: To identify genetic risk variants for ARDS using large scale genotyping.
Methods: A multistage genetic association study was conducted of three critically ill populations phenotyped for ARDS.
Am J Respir Crit Care Med
September 2012
Rationale: Elevated long pentraxin-3 (PTX3) levels are associated with the development of primary graft dysfunction (PGD) after lung transplantation. Abnormalities in innate immunity, mediated by PTX3 release, may play a role in PGD pathogenesis.
Objectives: Our goal was to test whether variants in the gene encoding PTX3 are risk factors for PGD.
Background: We used a gene - based replication strategy to test the reproducibility of prior acute lung injury (ALI) candidate gene associations.
Methods: We phenotyped 474 patients from a prospective severe trauma cohort study for ALI. Genomic DNA from subjects' blood was genotyped using the IBC chip, a multiplex single nucleotide polymorphism (SNP) array.
Background: Peroxiredoxin 6 (PRDX6) is involved in redox regulation of the cell and is thought to be protective against oxidant injury. Little is known about genetic variation within the PRDX6 gene and its association with acute lung injury (ALI). In this study we sequenced the PRDX6 gene to uncover common variants, and tested association with ALI following major trauma.
View Article and Find Full Text PDFRationale: Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI.
Objectives: To identify ALI risk variants after major trauma using a large-scale candidate gene approach.