Publications by authors named "Melanie Rich"

Plants have colonized lands 450 million years ago. This terrestrialization was facilitated by developmental and functional innovations. Recent evo-devo approaches have demonstrated that one of these innovations was the mutualistic arbuscular mycorrhizal symbiosis (AMS).

View Article and Find Full Text PDF

Most extant land plants establish a mutually beneficial relationship with soil fungi called mycorrhizal symbiosis. From their partners, plants get access to mineral nutrient and water resources transported via a fungal network that acts like an extension of their root systems. Using genetic and molecular tools, we showed that distant plant species use similar molecular mechanisms during the symbiosis.

View Article and Find Full Text PDF

In flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants.

View Article and Find Full Text PDF

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort to AMF and its direct regulation by the transcription factor WRINKLED (WRI).

View Article and Find Full Text PDF

The quest for determining how the plants that first lived on land 450 million years ago looked is among the most exciting challenges in evolutionary biology. Recent work indicates that they displayed angiosperm-like stomata.

View Article and Find Full Text PDF
Article Synopsis
  • Plants are crucial for terrestrial ecosystems and their adaptation to land likely involved partnerships with arbuscular mycorrhizal fungi.
  • The study analyzed 271 transcriptomes and 116 genomes, showing that a common signaling pathway developed alongside intracellular symbioses from early mycorrhiza to more complex forms in flowering plants.
  • However, plants with only extracellular symbioses have lost this signaling pathway, highlighting an evolutionary connection among intracellular symbiotic relationships over 450 million years.
View Article and Find Full Text PDF

Our planet is teeming with an astounding diversity of plants. In a mere single group of closely related species, tremendous diversity can be observed in their form and function - the colour of petals in flowering plants, the shape of the fronds in ferns, and the branching pattern of the gametophyte in mosses. Diversity can also be found in subtler traits, such as the resistance to pathogens or the ability to recruit symbiotic microbes from the environment.

View Article and Find Full Text PDF

Background: Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont.

View Article and Find Full Text PDF

Most plants entertain mutualistic interactions known as arbuscular mycorrhiza (AM) with soil fungi (Glomeromycota) which provide them with mineral nutrients in exchange for reduced carbon from the plant. Mycorrhizal roots represent strong carbon sinks in which hexoses are transferred from the plant host to the fungus. However, most of the carbon in AM fungi is stored in the form of lipids.

View Article and Find Full Text PDF

Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P.

View Article and Find Full Text PDF

Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules.

View Article and Find Full Text PDF

Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host.

View Article and Find Full Text PDF