Publications by authors named "Melanie Rall"

Quercetin (Que) is an abundant flavonoid in the human diet and high-concentration food supplement with reported pro- and anti-carcinogenic activities. Topoisomerase II (TopoII) inhibition and subsequent DNA damage induction by Que was implicated in the mixed lineage leukemia gene (MLL) rearrangements that can induce infant and adult leukemias. This notion raised concerns regarding possible genotoxicities of Que in hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3).

View Article and Find Full Text PDF

Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC.

View Article and Find Full Text PDF