(1) Background: The stratification of uveal melanoma (UM) patients into prognostic groups is critical for patient management and for directing patients towards clinical trials. Current classification is based on clinicopathological and molecular features of the tumour. Analysis of circulating tumour cells (CTCs) has been proposed as a tool to avoid invasive biopsy of the primary tumour.
View Article and Find Full Text PDFBackground: The validity of circulating tumour DNA (ctDNA) as an indicator of disease progression compared to medical imaging in patients with metastatic melanoma requires detailed evaluation.
Methods: Here, we carried out a retrospective ctDNA analysis of 108 plasma samples collected at the time of disease progression. We also analysed a validation cohort of 66 metastatic melanoma patients monitored prospectively after response to systemic therapy.
In this study, we evaluated the predictive value of circulating tumour DNA (ctDNA) to inform therapeutic outcomes in metastatic melanoma patients receiving systemic therapies. We analysed 142 plasma samples from metastatic melanoma patients prior to commencement of systemic therapy: 70 were treated with BRAF/MEK inhibitors and 72 with immunotherapies. Patient-specific droplet digital polymerase chain reaction assays were designed for ctDNA detection.
View Article and Find Full Text PDFPurpose: We evaluated the predictive value of pretreatment ctDNA to inform therapeutic outcomes in patients with metastatic melanoma relative to type and line of treatment.
Experimental Design: Plasma circulating tumor DNA (ctDNA) was quantified in 125 samples collected from 110 patients prior to commencing treatment with immune checkpoint inhibitors (ICIs), as first- ( = 32) or second-line ( = 27) regimens, or prior to commencing first-line BRAF/MEK inhibitor therapy ( = 66). An external validation cohort included 128 patients commencing ICI therapies in the first- ( = 77) or second-line ( = 51) settings.
Analysis of specific somatic copy number alterations (SCNAs) using multiplex ligation-dependent probe amplification (MLPA) is used routinely as a prognostic test for uveal melanoma (UM). This technique requires relatively large amounts of input DNA, unattainable from many small fine-needle aspirate biopsy specimens. Herein, we compared the use of MLPA with whole-genome amplification (WGA) combined with low-pass whole-genome sequencing (LP-WGS) for detection of SCNA profiles in UM biopsy specimens.
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of using circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) for the management of uveal melanoma (UM).
Patients And Methods: Low-coverage whole-genome sequencing was used to determine somatic chromosomal copy number alterations (SCNAs) in primary UM tumors, ctDNA, and whole-genome amplified CTCs. CTCs were immunocaptured using an antimelanoma-associated chondroitin sulfate antibody conjugated to magnetic beads and immunostained for melanoma antigen recognised by T cells 1 (MART1)/glycoprotein 100 (gp100)/S100 calcium-binding protein β (S100β).
Strength training has, in recent years, been shown to be beneficial for people with Parkinson disease and multiple sclerosis. Consensus regarding its utility for these disorders nevertheless remains contentious among healthcare professionals. Greater clarity is required, especially in regards to the type and magnitude of effects as well as the response differences to strength training between individuals with Parkinson disease or multiple sclerosis.
View Article and Find Full Text PDFDevelopment
February 2014
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
December 2013
Current diagnostic techniques used for the early detection of cancers are successful but subject to detection bias. A recent focus lies in the development of more accurate diagnostic tools. An increase in serologic autoantibody levels has been shown to precede the development of cancer disease symptoms.
View Article and Find Full Text PDFPax3 has numerous integral functions in embryonic tissue morphogenesis and knowledge of its complex function in cells of adult tissue continues to unfold. Across a variety of adult tissue lineages, the role of Pax3 is principally linked to maintenance of the tissue's resident stem/progenitor cell population. In adult peripheral nerves, Pax3 is reported to be expressed in nonmyelinating Schwann cells, however, little is known about the purpose of this expression.
View Article and Find Full Text PDFPax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo.
View Article and Find Full Text PDFThe transcription factor Pax7 has been implicated in the normal development of the superior colliculus and continues to be expressed in the adult superior colliculus, where it is concentrated in the retino-recipient laminae. Here we assessed, immunohistochemically, Pax7 expression in the adult rat superior colliculus after unilateral intraorbital optic nerve transection. We show that after optic nerve transection, the number of Pax7-expressing cells increased to re-establish the developmental rostral-caudal gradient and that these Pax7-expressing superior colliculus cells were neurons.
View Article and Find Full Text PDFThe cloning of transcription factor antibody-immunoprecipitated genomic fragments from chromatin immunoprecipitation (ChIP) experiments is a technically challenging procedure, especially when the input genomic DNA is isolated from whole tissues (in vivo) rather than cultured cells. Here we adapt a technique known as Tagged-Random PCR (T-PCR) to amplify ChIP-immunoprecipitated DNA from mouse embryonic tissue prior to cloning. Importantly, we then compare this technique with tandem shotgun-cloning experiments in terms of its capacity to identify target genes.
View Article and Find Full Text PDF