Publications by authors named "Melanie Pedrazzani"

Recent advancements in high-resolution imaging have significantly improved our understanding of microstructural changes in the skin and their relationship to the aging process. Line Field Confocal Optical Coherence Tomography (LC-OCT) provides detailed 3D insights into various skin layers, including the papillary dermis and its fibrous network. In this study, a deep learning model utilizing a 3D ResNet-18 network was trained to predict chronological age from LC-OCT images of 100 healthy Caucasian female volunteers, aged 20 to 70 years.

View Article and Find Full Text PDF

Background: Quantitative biomarkers of facial skin aging were investigated in 109 healthy Asian female volunteers, aged 20 to 70 years.

Materials And Methods: In vivo 3D Line-field Confocal Optical Coherence Tomography (LC-OCT) imaging, enhanced by Artificial Intelligence (AI)-based quantification algorithms, was utilized to compute various metrics, including stratum corneum thickness (SC), viable epidermal (VE) thickness, and Dermal-Epidermal Junction (DEJ) undulation along with cellular metrics for the temple, cheekbone, and mandible.

Results: Comparison with data from a cohort of healthy Caucasian volunteers revealed similarities in the variations of stratum corneum and viable epidermis layers, as well as cellular shape and size with age in both ethnic groups.

View Article and Find Full Text PDF

Background: Facial dark spots remain a significant challenge for the cosmetic industry, in terms of providing effective treatment. Using Line-field Confocal Optical Coherence Tomography (LC-OCT), we investigated the internal structural features of photo-aging spot areas and evaluated the efficacy of a skin-brightening cosmetic product.

Materials And Methods: Twenty-six Asian female volunteers, aged between 29 and 65 years, applied a cosmetic product on their entire face twice a day for 2 months.

View Article and Find Full Text PDF

Quantitative biomarkers of facial skin ageing were studied from one hundred healthy Caucasian female volunteers, aged 20-70 years, using in vivo 3D Line-field Confocal Optical Coherence Tomography (LC-OCT) imaging coupled with Artificial Intelligence (AI)-based quantification algorithms. Layer metrics, i.e.

View Article and Find Full Text PDF

Epidermal three-dimensional (3D) topography/quantification has not been completely characterized yet. The recently developed line-field confocal optical coherence tomography (LC-OCT) provides real-time, high-resolution, in-vivo 3D imaging of the skin. This pilot study aimed at quantifying epidermal metrics (epidermal thicknesses, dermal-epidermal junction [DEJ] undulation and keratinocyte number/shape/size) using 3D LC-OCT.

View Article and Find Full Text PDF

How does the concerted activity of neuronal populations shape behavior? Impediments to address this question are primarily due to critical experimental barriers. An integrated perspective on large scale neural information processing requires an in vivo approach that can combine the advantages of exhaustively observing all neurons dedicated to a given type of stimulus, and simultaneously achieve a resolution that is precise enough to capture individual neuron activity. Current experimental data from in vivo observations are either restricted to a small fraction of the total number of neurons, or are based on larger brain volumes but at a low spatial and temporal resolution.

View Article and Find Full Text PDF

Background: Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique providing "optical biopsies" of the skin in real time and non-invasively. At a center optical wavelength of 1.3 µm, this innovative technology can be applied to dermo-cosmetic product development due to both high image resolution (~2 µm) and sufficient penetration (~0.

View Article and Find Full Text PDF

We present an implementation of a sensorless adaptive optics loop in a widefield fluorescence microscope. This setup is designed to compensate for aberrations induced by the sample on both excitation and emission pathways. It allows fast optical sectioning inside a living Drosophila brain.

View Article and Find Full Text PDF

Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages.

View Article and Find Full Text PDF

The photofragmentation pathways at 263 nm of several small peptides containing tyrosine as the UV chromophore have been characterized using a multi-coincidence technique. A detailed study of the fragmentation dynamics of protonated Glycine-Tyrosine (GYH(+)), Tyrosine-Glycine (YGH(+)), Glycine-Tyrosine-Glycine (GYGH(+)), Alanine-Tyrosine (AYH(+)) and Tyrosine-Alanine (YAH(+)) is presented in this paper. Fragmentations occurring or initiated in an excited state are distinguished from those occurring after internal conversion to the ground electronic state by their rapid fragmentation times and binary nature.

View Article and Find Full Text PDF