Publications by authors named "Melanie Neutzner"

Background: The three-layered meninges cover and protect the central nervous system and form the interface between cerebrospinal fluid and the brain. They are host to a lymphatic system essential for maintaining fluid dynamics inside the cerebrospinal fluid-filled subarachnoid space and across the brain parenchyma via their connection to glymphatic structures. Meningeal fibroblasts lining and traversing the subarachnoid space have direct impact on the composition of the cerebrospinal fluid through endocytotic uptake as well as extensive protein secretion.

View Article and Find Full Text PDF

The vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFβ-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs).

View Article and Find Full Text PDF

Initiation of PINK1- and PRKN-dependent mitophagy is a highly regulated process involving the activity of the AAA-ATPase VCP/p97, a cofactor-guided multifunctional protein central to handling ubiquitinated client proteins. Removal of ubiquitinated substrates such as the mitofusin MFN2 from the outer mitochondrial membrane by VCP is critical for PRKN accumulation on mitochondria, which drives mitophagy. Here we characterize the role of the UBA and UBX-domain containing VCP cofactor UBXN1/SAKS1 during mitophagy.

View Article and Find Full Text PDF

Pygopus 2 (Pygo2) is a coactivator of Wnt/β-catenin signaling that can bind bi- or trimethylated lysine 4 of histone-3 (H3K4me) and participate in chromatin reading and writing. It remains unknown whether the Pygo2-H3K4me association has a functional relevance in breast cancer progression . To investigate the functional relevance of histone-binding activity of Pygo2 in malignant progression of breast cancer, we generated a knock-in mouse model where binding of Pygo2 to H3K4me was rendered ineffective.

View Article and Find Full Text PDF

An epithelial-mesenchymal transition (EMT) has been implicated in cancer metastasis, drug resistance, and in conferring stem cell-like traits to cancer cells. Most studies investigating EMT in cancer have either utilized immortalized or cancer cell lines that are already primed to undergo an EMT and do not adequately represent a fully differentiated epithelial state in the absence of an EMT induction. Hence, model systems are required which recapitulate all stages of EMT in cancer cells.

View Article and Find Full Text PDF

Ubiquitination, the covalent attachment of the small protein modifier ubiquitin to a substrate protein is involved in virtually all cellular processes by mediating the regulated degradation of proteins. Aside from proteasomal degradation, ubiquitination plays important roles in transcriptional regulation, protein trafficking, including endocytosis and lysosomal targeting, and activation of kinases involved in signalling processes. A three-tiered enzymatic cascade consisting of E1 or ubiquitin-activating enzyme, E2 or ubiquitin-conjugating enzyme, and E3, or ubiquitin ligases, is necessary to achieve the many forms of ubiquitination known to date.

View Article and Find Full Text PDF

To identify novel regulators of endoplasmic reticulum (ER)-linked protein degradation and ER function, we determined the entire inventory of membrane-spanning RING finger E3 ubiquitin ligases localized to the ER. We identified 24 ER membrane-anchored ubiquitin ligases and found Nixin/ZNRF4 to be central for the regulation of calnexin turnover. Ectopic expression of wild type Nixin induced a dramatic down-regulation of the ER-localized chaperone calnexin that was prevented by inactivation of the Nixin RING domain.

View Article and Find Full Text PDF

The relevance of angiogenesis in tumor biology and as a therapeutic target is well established. MFG-E8 (also termed lactadherin) and developmental endothelial locus 1 (Del1) constitute a two-gene family of alpha(v)beta(3)/beta(5) ligands that regulate angiogenesis. After detecting MFG-E8 mRNA in murine tumor cell lines, we sought to determine if MFG-E8 influenced tumorigenesis in Rip1-Tag2 transgenic mice, a cancer model in which angiogenesis is critical.

View Article and Find Full Text PDF