The discovery of the light-gated ion channel channelrhodopsin (ChR) set the stage for the novel field of optogenetics, where cellular processes are controlled by light. However, the underlying molecular mechanism of light-induced cation permeation in ChR2 remains unknown. Here, we have traced the structural changes of ChR2 by time-resolved FTIR spectroscopy, complemented by functional electrophysiological measurements.
View Article and Find Full Text PDFElectrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.
View Article and Find Full Text PDFPhotochem Photobiol Sci
February 2010
The light-gated cation channel Channelrhodopsin-2 (ChR2), a retinylidene protein found in the eye-spot of Chlamydomonas reinhardtii, became an optogenetic tool to trigger neurophysiological responses by light and, thus, revolutionized spatio-temporal studies of such processes. The reaction mechanism still remains elusive but recent vibrational spectroscopic experiments started to resolve details of the associated structural changes during the photocycle. Large alterations in the polypeptide backbone were observed by FT-IR spectroscopy that precede and succeed the opening and closing of the channel, respectively.
View Article and Find Full Text PDFChannelrhodopsin-2 mediates phototaxis in green algae by acting as a light-gated cation channel. As a result of this property, it is used as a novel optogenetic tool in neurophysiological applications. Structural information is still scant and we present here the first resonance Raman spectra of channelrhodopsin-2.
View Article and Find Full Text PDFChannelrhodopsin-2 (ChR2) is a member of the new class of light-gated ion channels which serve as phototaxis receptors in the green alga Chlamydomonas reinhardtii. The protein is employed in optogenetics where neural circuits are optically stimulated under high spatiotemporal control. Despite its rapidly growing use in physiological experiments, the reaction mechanism of ChR2 is poorly understood.
View Article and Find Full Text PDF